Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(|x-3,5|\ge0;\forall x\)
\(\Rightarrow|x-3,5|+2,3\ge2,3;\forall x\)
\(\Rightarrow\frac{4,6}{|x-3,5|+2,3}\le\frac{4,6}{2,3};\forall x\)
Hay \(I\le2;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|x-3,5|=0\)
\(\Leftrightarrow x=3,5\)
Vậy MAX I =2 \(\Leftrightarrow x=3,5\)
a) Ta có: \(\hept{\begin{cases}|x+2,1|\ge0;\forall x\\|y-4,6-2015|\ge0;\forall y\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-|x+2,1|\le0;\forall x\\-|y-2019,6|\le0;\forall x\end{cases}}\)
\(\Rightarrow-|x+2,1|-|y-2019,6|\le0;\forall x,y\)
Hay \(G\le0;\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}|x+2,1|=0\\|y-2019,6|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2,1\\y=2019,6\end{cases}}\)
Vậy MAX G=0 \(\Leftrightarrow\hept{\begin{cases}x=-2,1\\y=2019,6\end{cases}}\)
Ta có:
\(\left|x+1\right|+\left|x+4\right|+4=4\)
\(\left|x+1\right|+\left|x+4\right|=0\)
Mà \(\left|x+1\right|\ge0;\left|x+4\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+4\right|\ge0\)
Vậy GTNN là 0
Sửa đề : Tìm GTNN của biểu thức \(\left|x+1\right|+\left|x+4\right|+4\)
Bài giải
Ta có : \(\left|x+1\right|+\left|x+4\right|+4=4\)
\(\left|x+1\right|+\left|x+4\right|=4-4\)
\(\left|x+1\right|+\left|x+4\right|=0\)
Vì giá trị tuyệt đối của hai số đối nhau thì bằng nhau nên ta biến đổi \(\left|x+1\right|=\left|-x-1\right|\)
Vì \(\left|-x-1\right|\ge0\) , \(\left|x+4\right|\ge0\)
Áp dụng tính chất \(\left|A\right|\ge A\) . Ta có :
\(\left|-x-1\right|\ge-x-1^{\left(1\right)}\)Dấu " = " xảy ra khi \(-x-1>0\) \(\Leftrightarrow\text{ }-x>0\)
\(\left|x+4\right|\ge x+4^{\left(2\right)}\)Dấu " = " xảy ra khi \(x+4>0\) \(\Rightarrow\text{ }x>-4\)
Cộng vế trái với vế trái, vế phải với vế phải của \(^{\left(1\right)\text{ }}\) và \(^{\left(2\right)}\) với nhau ta được :
\(\left|-x-1\right|+\left|x+4\right|\ge-x-1+x+4\)
\(\left|-x-1\right|+\left|x+4\right|\ge3\)Dấu " = " xảy ra khi :
TH1 : \(\hept{\begin{cases}\left|-x-1\right|=0\\\left|x+4\right|=3\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}-x-1=0\\x+4=\pm3\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-1\\x=-7\text{ hoặc }x=-1\end{cases}}\)
TH2 : \(\hept{\begin{cases}\left|-x-1\right|=3\\\left|x+4\right|=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}-x-1=\pm3\\x+4=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\text{ hoặc }x=-4\\x=-4\end{cases}}\)
Vậy \(x\in\left\{-1\text{ ; }-4\right\}\)
Mình thấy lí luận của mình cũng có hơi lõng lẽo ! Bạn thấy đúng thì làm nha !
ta có: |x|+10 > 10 với mọi x
=> \(\frac{-10}{\left|x\right|+10}\le-\frac{10}{10}=-1\)
=> \(\frac{-10}{\left|x\right|+10}\) có GTLN là -1 <=> |x| +10=10 <=>x=0
Vậy GTLN của ps là -1 tại x=0
ko có GTNN đâu bn,nên ta tìm GTLN thôi
\(K=|x-1|+|x-2|+|x-3|\)
\(=\left(|x-1|+|x-3|\right)+|x-2|\)
\(=\left(|x-1|+|3-x|\right)+|x-2|\)
Đặt \(A=|x-1|+|3-x|\ge|x-1+3-x|\)
Hay \(A\ge2\left(1\right)\)
Dấu "= " xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\3-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>3\end{cases}\left(loai\right)}\)
\(\Leftrightarrow1\le x\le3\)
Đặt \(B=|x-2|\)
Ta có: \(|x-2|\ge0;\forall x\)
Hay \(B\ge0;\forall x\left(2\right)\)
Dấu "=" xảy ra \(\Leftrightarrow|x-2|=0\)
\(\Leftrightarrow x=2\)
Từ \(\left(1\right);\left(2\right)\Rightarrow A+B\ge2+0\)
Hay \(K\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow}x=2\)
Vậy MIN K=2 \(\Leftrightarrow x=2\)
`@` `\text {Ans}`
`\downarrow`
Viết các biểu thức sau dưới dạng hiệu chứ ạ?
`e,`
`(x+1)(x-1)`
`= x(x-1) + x - 1`
`= x^2 - x + x - 1`
`= x^2 - 1`
`f,`
`(x-2y)(x+2y)?`
`= x(x+2y) - 2y(x+2y)`
`= x^2 + 2xy - 2xy - 4y^2`
`= x^2 - 4y^2`
`g,`
`(x+y+z)(x-y-z)`
`= x(x-y-z) + y(x-y-z) + z(x-y-z)`
`= x^2 - xy - xz + xy - y^2 - yz + xz - yz - z^2`
`= x^2 - y^2 - z^2 - 2yz`
`h,`
`(x-y+z)(x+y+z)`
`= x(x+y+z) - y(x+y+z) + z(x+y+z)`
`= x^2 + xy + xz - xy - y^2 - yz + xz + yz + z^2`
`= x^2 - y^2 + z^2 + 2xz`
Câu này c xem lại đề.
\(\left(x-1\right)^2-5\ge-5=>min=-5\left(x-1\right)^2=0=>x-1=0=>x=1\)
vay GTNN la -5 tai x=1
GTNN của
+,G=3/2
+,H=-2015
+,K=5