Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :
Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath
Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!
B1:
\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=2+\frac{x}{y}+\frac{y}{x}\)
Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
Thật vậy !!!
\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)
\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)
\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)
\(\Leftrightarrow2x^2-5xy+2y^2\le0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )
Dấu "=" xảy ra tại \(x=1;y=2\)
Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Cho \(x;y;z\ge0\)và \(xy+yz+zx=1\)Tìm GTLN
\(Q=9\left(x^2+y^2+z^2\right)-4\left(x^3+y^3+z^3\right)\)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
*)Tìm GTLN
Từ giả thiết có: \(\left\{{}\begin{matrix}0\le x\le1\\0\le y\le1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x^3\le x^2\\y^3\le y^2\end{matrix}\right.\)\(\Rightarrow x^3+y^3\le x^2+y^2=1\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
*)Tìm GTNN
Ta có: \(A=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Áp dụng BĐT \(\left(x+y\right)^2\ge2\left(x^2+y^2\right)\) ta có:
\(\left(x+y\right)^2\ge2\left(x^2+y^2\right)=2\Rightarrow x+y\ge\sqrt{2}\left(x;y\ge0\right)\left(1\right)\)
Và \(xy\le\dfrac{x^2+y^2}{2}=\dfrac{1}{2}\Rightarrow-xy\ge-\dfrac{1}{2}\)
\(\Rightarrow x^2+y^2-xy\ge1-\dfrac{1}{2}=\dfrac{1}{2}\left(2\right)\)
Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:
\(A=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\sqrt{2}\cdot\dfrac{1}{2}=\dfrac{1}{\sqrt{2}}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)
***) Vì \(x,y\ge0\) và \(x^2+y^2=1\) nên:
\(\left\{{}\begin{matrix}0\le x\le1\\0\le y\le1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^3\le x^2\\y^3\le y^2\end{matrix}\right.\Leftrightarrow x^3+y^3\le x^2+y^2=1\)
Vậy Max A=1 \(\Leftrightarrow\left\{{}\begin{matrix}x^3=x^2\\y^3=y^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)
***) Áp dụng bất đẳng thức cô si ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy=\left(x+y\right)^2\)
\(\Leftrightarrow\left(x+y\right)^2\le2\Leftrightarrow x+y\le\sqrt{2}\Rightarrow\dfrac{x+y}{\sqrt{2}}\le1\) (1)
Áp dụng BĐT Bunyakovsky có:
\(\left(x^3+y^3\right)\left(x+y\right)\ge\left(\sqrt{x^3}\cdot\sqrt{x}+\sqrt{y^3}\cdot\sqrt{y}\right)^2=\left(x^2+y^2\right)^2=1\) (2)
Mặt khác: \(x^3+y^3\ge\dfrac{\left(x^3+y^3\right)\left(x+y\right)}{\sqrt{2}}\) (theo 1) (3)
Từ (2);(3) \(\Rightarrow x^3+y^3\ge\dfrac{1}{\sqrt{2}}\)
Vậy min A=\(\dfrac{1}{\sqrt{2}}\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)