K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2020

DOAN CUOI LA 1 NHA

MINH VIET NHAM

29 tháng 9 2020

\(C=x^2+3\cdot|y\cdot2|-1\) 

Ta có 

\(x^2\ge0\forall x;|y\cdot2|\ge0\forall y\) 

\(x^2+3\cdot|y\cdot2|-1\ge-1\)  

Dấu = xảy ra 

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\2y=0\end{cases}}\) 

\(\hept{\begin{cases}x=0\\y=0\end{cases}}\) 

Vậy GTNN của C là -1 khi và chỉ khi x = 0 ; y = 0 

\(D=x+|x|\)  

Ta có 

\(|x|\ge0\forall x\)    

\(\hept{\begin{cases}x+|x|\ge2x\forall x\ge0\\x+|x|\ge0\forall x\le0\end{cases}}\) 

Khi đó GTNN của D là 0 khi và chỉ khi x nhỏ hơn hoặc bằng 0 

11 tháng 9 2017

Để D nhỏ nhất thì I x^2 + 5 I phải có kết quả dương nhỏ nhất .

=> x = 0 

I y + 4 I đạt giá trị nhỏ nhất khi y = -4

Vậy GTNN của biểu thức trên là 5 

 E đạt giá trị nhỏ nhất khi x = 1

y - 4 có giá trị nhỏ nhất là 0 nên y = -4

Vậy GTNN của biểu thức trên là 5

11 tháng 9 2017

Ta có: E=|x-1|+|x-2|+|x-3|+|x-4|=(|x-1|+|3-x|)+(|x-2|+|4-x|) \(\ge\) 2+2 = 4

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)

Vậy MinE = 4 khi \(2\le x\le3\)

30 tháng 5 2016

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

30 tháng 5 2016

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)

17 tháng 12 2022

C=|2x-3/5|+4/3>=4/3

Dấu = xảy ra khi x=3/10

D=|x-3|+|-x-2|>=|x-3-x-2|=5

Dấu = xảy ra khi -2<=x<=3

11 tháng 9 2017

\(a,\left(2-x\right)\left(\dfrac{4}{5}-x\right)< 0\)

=>Trong 2 số phải có 1 số âm và 1 số dương

\(2-x>\dfrac{4}{5}-x\)

=>\(\dfrac{4}{5}< x< 2\)

Vậy...

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2