K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

Ta có : C = |x-2016|+|x-2015| = |2016-x|+|x-2015|

 Áp dụng công thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)(a;b\(\in Z\))

Ta có : C = |2016-x|+|x-2015| \(\ge\left|2016-x+x-2015\right|=\left|2016-2015\right|=1\)

Dấu "=" xảy ra khi : \(\hept{\begin{cases}x\le2016\\x\ge2015\end{cases}}\Rightarrow x=\hept{\begin{cases}2016\\2015\end{cases}}\)

Vậy với \(x=\hept{\begin{cases}2016\\2015\end{cases}}\) thì C đạt Min là 1

21 tháng 9 2020

Ta có A = |x - 2015| + |x - 2016|

= |x - 2015| + |2016 - x| 

\(\ge\)|x - 2015 + 2016 - x| = 1

Dấu "=" xảy ra <=> \(\left(x-2015\right)\left(2016-x\right)\ge0\)

TH1 : \(\hept{\begin{cases}x-2015\ge0\\2016-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2015\\x\le2016\end{cases}}\Rightarrow2015\le x\le2016\)

TH2 : \(\hept{\begin{cases}x-2015\le0\\2016-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2015\\x\ge2016\end{cases}}\left(\text{loại}\right)\)

Vậy Min A = 1 <=> \(2015\le x\le2016\)

b) Ta có B = |x - 5| + |x  - 7|+ |2x - 18|

= |x - 5| + |x  - 7|+ |18 - 2x|

\(\ge\)|x - 5 + x - 7| + |18 - 2x| 

= |2x - 12| + |18 - 2x|

\(\ge\)|2x - 12 + 18 - 2x| = 6

Dấu "=" xảy ra <=> \(\left(2x-12\right)\left(18-2x\right)\ge0\)

TH1 : \(\hept{\begin{cases}2x-12\ge0\\18-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge6\\x\le9\end{cases}}\Rightarrow6\le x\le9\)

TH2 : \(\hept{\begin{cases}2x-12\le0\\18-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le6\\x\ge9\end{cases}}\)(loại)

Vậy Min B = 6 <=> \(6\le x\le9\)

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

a+b+c=1 <=> a+b=1-c

+) Nếu 1-c=0 => a+b=0 <=> a=-b

=> A = a2015+b2015+c2015

A = (-b)2015+b2015+c2015

A = c2015 => A = 1 (Vì 1-c=0) (1)

Ta có: a3+b3+c3=1

a3+b3=1-c3

(a+b)(a2-ab+b20=(1-c)(1+c+c2)

=> (1-c)(a2-ab+b2)=(1-c)(1+c+c2)

=> a2-ab+b2=1+c+c2

(a+b)2-3ab=(1-c)2+3c

=> -3ab=3c <=> -ab=c

Thay -ab = c vào a+b+c=1, ta có:

a+b+(-ab)=1 <=> a+b-ab-1=0 <=> a(1-b)-(1-b)=0 <=> (a-1)(1-b)=0

=> a-1=0 hoặc 1-b = 0 <=> a=1 hoặc b=1

+) Nếu a=1 => b+c=0 <=> b=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015-b2015

=> A=a2015 => A=1 (2)

+) Nếu b=1 => a+c=0 <=>a=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015+-a2015

=> A=b2015 => A=1 (3)

Từ (1)(2)(3) => A = 1

Vậy A = 1 với a+b+c=1 và a3+b3+c3=1

b) B = x2-3x+2016

B=x2-3x+2,25+2013,75

B=(x-1,5)2+2013,75

Vì (x-1,5)2 ≥ 0 => (x-1,5)2+2013,75 ≥ 2013,75

=> B ≥ 2013,75

=> GTNN của B bằng 2013,75

Dấu '=' xảy ra khi (x-1,5)2=0 <=> x-1,5=0 <=> x=1,5

Vậy GTNN của B bằng 2013,75 tại x = 1,5

23 tháng 3 2020

\(\Leftrightarrow\frac{x-3}{2015}+\frac{x-2}{2016}-\frac{x-2016}{2}-\frac{x-2015}{3}=0\)

\(\Leftrightarrow\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-2}{2016}-1\right)-\left(\frac{x-2016}{2}-1\right)-\left(\frac{x-2015}{3}-1\right)=0\)

\(\Leftrightarrow\frac{x-2018}{2015}+\frac{x-2018}{2016}-\frac{x-2018}{2}-\frac{x-2018}{3}=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\right)=0\Rightarrow x=2018\)

20 tháng 3 2020

1. 

Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)

\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)

\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)

\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)

Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)

Vậy Min P=6 khi a=673; b=672; c=671

13 tháng 1 2019

Câu 1 thử cộng 3 vào P xem 

Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)

13 tháng 3 2021

\(A=\left|x-1008\right|+\left|x-1008\right|+\left|2015-x\right|\ge0+x-1008+2015-x=1007\).

Đẳng thức xảy ra khi và chỉ khi \(x=1008\).