Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(x^2+\dfrac{y^2}{4}+4-xy+4x-2y\right)+\dfrac{3}{4}\left(y^2-4y+4\right)+1011\)
\(=\left(x-\dfrac{y}{2}+2\right)^2+\dfrac{3}{4}\left(y-2\right)^2+1011\ge1011\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-1;2\right)\)
a) Ta có: \(B=x^2+4y^2+4x-4y\)
\(=\left(x^2+4x+4\right)+\left(4y^2-4y+1\right)-5\)
\(=\left(x+2\right)^2+\left(2y-1\right)^2-5\ge-5\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(-2;\dfrac{1}{2}\right)\)
\(A=5\left(x^2-\dfrac{1}{5}x+\dfrac{1}{100}\right)+\dfrac{39}{20}=5\left(x-\dfrac{1}{10}\right)^2+\dfrac{39}{20}\ge\dfrac{39}{20}\)
\(A_{min}=\dfrac{39}{20}\) khi \(x=\dfrac{1}{10}\)
\(B=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}\right)+2\left(y^2-\dfrac{1}{2}y+\dfrac{1}{16}\right)-\dfrac{269}{24}=3\left(x+\dfrac{1}{6}\right)^2+2\left(y-\dfrac{1}{4}\right)^2-\dfrac{269}{24}\ge-\dfrac{269}{24}\)
\(B_{min}=-\dfrac{269}{24}\) khi \(x=-\dfrac{1}{6};y=\dfrac{1}{4}\)
A= 5x2-xz+2
A= (√5.x)2-2.√5.x.\(\dfrac{\text{√5}}{10}\)+\(\dfrac{1}{20}+\dfrac{39}{20}\)
A=(√5.x-\(\dfrac{\text{√5}}{10}\))2+\(\dfrac{39}{20}\)≥\(\dfrac{39}{20}\)
Dấu "=" xảy ra ⇔ (√5.x-\(\dfrac{\text{√5}}{10}\))=0
⇔ √5.x=\(\dfrac{\text{√5}}{10}\) ⇔ x=\(\dfrac{1}{10}\)
Vậy GTNN của A=\(\dfrac{39}{20}\) tại x=\(\dfrac{1}{10}\)
\(a,A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4\right)+2\)
\(=-\left(x^2+2\cdot x\cdot2+2^2\right)+2\)
\(=-\left(x+2\right)^2+2\)
Ta thấy: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2+2\le2\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(Max_A=2\) khi \(x=-2\).
Cậu xem lại giúp mình có sai đề bài không nhé!
#\(Toru\)
Lời giải:
Vì $0< x< 1$ nên $x; 1-x>0$
Áp dụng BĐT Bunhiacopxky ta có:
\(\left(\frac{1}{x}+\frac{2}{1-x}\right)[x+(1-x)]\geq (1+\sqrt{2})^2\)
\(\Leftrightarrow A.1\geq (1+\sqrt{2})^2\)
\(\Leftrightarrow A\geq (1+\sqrt{2})^2\)
Vậy GTNN của $A$ là \((1+\sqrt{2})^2\). Dấu "=" xảy ra khi \(\frac{1}{x}=\frac{\sqrt{2}}{1-x}\Leftrightarrow x=\sqrt{2}-1\)
Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap
1. (x - 1)^3 + 3.(x - 3)^2 - (x + 2).(x^2 - 2x + 4) = (x + 2)^3 - (x - 3).(x^2 + 9) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3(x^2 - 6x + 9) - (x^3 + 2^3)
= x^3 + 6x^2 + 12x + 8 - (x^3 - 3x^2 + 9x -27) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3x^2 - 18x + 27 - x^3 - 8
= x^3 + 6x^2 + 12x + 8 - x^3 + 3x^2 - 9x + 27 - 6x^2 + 5
<=> 3x - 18x -12x - 3x^2 + 9x = 27 + 5 + 8 + 8 + 1 - 27
<=> - 3x^2 - 18x - 22 = 0
<=> 3x^2 + 18x + 22 = 0
Nửa chu vi mảnh đất là:
120 : 2 = 60 (m)
Chiều dài hơn chiều rộng là:
5 + 5 = 10 (m)
Chiều rộng là:
( 60 - 10 ) : 2 = 25 (m)
Chiều dài là:
25 + 10 = 35 (m)
Diện tích là:
25 35 = 875 ( )
\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)
\(A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\)
+) Đặt \(B=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=3\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(x-1\right)\left(4-x\right)=0\)
\(\Leftrightarrow1\le x\le4\)
+) Đặt \(C=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)
Dấu bằng xảy ra \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow2\le x\le3\)
\(\Rightarrow A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge4\)
Dấu '' = '' xảy ra
\(\Leftrightarrow\hept{\begin{cases}1\le x\le4\\2\le x\le3\end{cases}\Leftrightarrow2\le x\le3}\)
Vậy.................
Alan Walker bạn vào câu hỏi này tham khảo nha : https://olm.vn/hoi-dap/detail/211209248935.html
Hoặc bạn vào trong câu hỏi tương tự nha !