Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: -4x2+4x-1=-(4x2-4x+1)<=>-((2x)2-2.2x+1)=-(2x-1)2
A = -4x2 + 4x - 1
= -( 4x2 - 4x + 1 )
= -( 2x - 1 )2 ≤ 0 ∀ x
Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2
=> MaxA = 0 <=> x = 1/2
B = 3x2 + 2x + 5
= 3( x2 + 2/3x + 1/9 ) + 14/3
= 3( x + 1/3 )2 + 14/3 ≥ 14/3 ∀ x
Đẳng thức xảy ra <=> x + 1/3 = 0 => x = -1/3
=> MinB = 14/3 <=> x = -1/3
+) Xét điều kiện bỏ dấu giá trị tuyệt đối của \(\left|x+5\right|\)
+) TH1 : Nếu \(x+5\ge0\)
\(\Rightarrow x\ge-5\)
\(\Rightarrow\left|x+5\right|=x+5\)
\(A=4.\left(x+5\right)+4x-1\)
\(A=8x+19\)
Vì \(x\ge-5\)
\(\Rightarrow8x\ge-40\)
\(\Rightarrow8x+19\ge-21\)
\(\Rightarrow A\ge-21\) ( * )
\(\Rightarrow\) Nếu \(x\ge-5\) thì \(A\ge-21\) ( * )
+) TH2 : Nếu \(x+5< 0\)
\(\Rightarrow x< -5\)
\(A=4.\left(-x-5\right)+4x-1\)
\(A=-4x-20+4x-1\)
\(A=-21\)
\(\Rightarrow\) Nếu \(x< -5\) thì \(A=-21\) ( ** )
Từ ( * ) ; ( ** )
\(\Rightarrow\) GTNN của \(A=-21\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(x< -5\)
\(C=\dfrac{5}{3-\left(4x+1\right)^2}\)
Điều kiện xác định khi
\(3-\left(4x+1\right)^2\ne0\Leftrightarrow\left[{}\begin{matrix}4x+1\ne\sqrt[]{3}\\4x+1\ne-\sqrt[]{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\sqrt[]{3}-1}{4}\\x\ne\dfrac{-\sqrt[]{3}-1}{4}\end{matrix}\right.\)
Ta có :
\(\left(4x+1\right)^2\ge0,\forall x\)
\(\Leftrightarrow3-\left(4x+1\right)^2\le3\)
\(\Leftrightarrow C=\dfrac{5}{3-\left(4x+1\right)^2}\ge\dfrac{5}{3}\)
Vậy \(GTNN\left(C\right)=\dfrac{5}{3}\left(tạix=-\dfrac{1}{4}\right)\)
\(B=\left(2x\right)^2+2\left(y-1\right)^2-5\)
vì \(\left\{{}\begin{matrix}\left(2x\right)^2\ge0,\forall x\\2\left(y-1\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\Rightarrow B=\left(2x\right)^2+2\left(y-1\right)^2-5\ge-5\)
Dấu "=" xảy tại khi
\(\left\{{}\begin{matrix}2x=0\\2\left(y-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Vậy \(GTNN\left(B\right)=-5\left(tạix=0;y=1\right)\)
1. 2x2-x=0
<=>x(2x-1)=o
=>x=0 hoặc x=1/2
2.A(x)4x2-8x+5/2=4(x-1/2)2+1/2
Vì 4(x-1/2)2>=o với mọi x
nên 4(x-1/2)2+1/2>=1/2 với mọi x
Dấu "="xảy ra khi và chỉ khi x-1/2=0<=> x= 1/2
Vậy GTNN của A=1/2 khi x= 1/2
Bài 1:\(2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Bài 2:\(A\left(x\right)=\frac{4x^2-8x+5}{2}=\frac{4\left(x^2-2x+1\right)+1}{2}=\frac{4\left(x-1\right)^2+1}{2}=2\left(x-1\right)^2+\frac{1}{2}\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2\Rightarrow A=2\left(x-1\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
=>\(A_{min}=\frac{1}{2}\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
tìm gtnn củaa, A=|2=4x|-6b, 1-4/x^2+1GIÚP MIK VS MIK CẢM ƠN - Hoc24
Giải:
Do 5|1 - 4x| \(\ge\)0 \(\forall\)x => 5|1 - 4x| - 1 \(\ge\)-1 \(\forall\)x
hay A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 1 - 4x = 0
<=> x = 1/4
Vậy MinA = -1 khi x = 1/4