Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(M=x^2-3x+5\)
\(M=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}\)
\(M=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu = xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min M = 11/4 khi x=3/2
b)\(N=2x^2+3x\)
\(N=2\left(x^2+\frac{3}{2}x\right)\)
\(N=2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)-\frac{9}{8}\)
\(N=2\left(x+\frac{3}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu = xảy ra khi \(x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)
Vậy MIn N = -9/8 khi x=-3/4
c)Tự làm nha
Ta có : x2 - 3x + 5
= x2 - 2.x.\(\frac{3}{2}\) + \(\frac{3}{2}^2\) + \(\frac{11}{4}\)
= \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(\ge\frac{11}{4}\forall x\in R\)
Vậy GTNN của biểu thức là : \(\frac{11}{4}\) khi \(x=\frac{3}{2}\)
a) \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\)
Vậy GTNN của P là 4 khi x = 1
b) \(Q=2x^2-6x=2x^2-6x+4,5-4,5=2.\left(x^2-3x+2,25\right)-4,5=2.\left(x-1,5\right)^2-4,5\)
Vì \(2.\left(x-1,5\right)^2\ge0\) nên \(2.\left(x-1,5\right)^2-4,5\ge-4,5\)
Vậy GTNN của Q là -4,5 khi x = 1,5
c) \(M=x^2+y^2-x+6y+10=\left(x^2-x+0,25\right)+\left(y^2+6y+9\right)+0,75\)
\(=\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\)
Vì \(\left(x-0,5\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\) nên \(\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\ge0,75\)
Vậy GTNN của M là 0,75 khi x = 0,5 và y = -3
Ta có : P = x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà : (x - 1)2 \(\ge0\forall x\)
Nên : (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là : 4 khi x = 1
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )
\(\Leftrightarrow x=2\)
b) \(2x^3+x^2-6x=0\)
\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)
c) \(4x^2+4xy+x^2-2x+1+y^2=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)
\(\frac{3x^2+6x+3-2x^2-5x-2}{x^2+2x+1}=3-\frac{2\left(x^2+\frac{2.5}{4}x+\frac{25}{16}+\frac{7}{16}\right)}{\left(x+1\right)^2}=3-\frac{2\left(x+\frac{5}{4}\right)^2+\frac{7}{8}}{\left(x+1\right)^2}\)
lập luận giải nốt nha