Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) =(5x)^2-2*5x+1+3
=(5x-1)^2+3
suy ra min=3
b) = -(x^2-2x+1)-1
=-(x^2-1)^2-1
suy ra Max=-1
c)=(x^2-2x+1)+(y^2-4y+4)+1
=(x^2-1)^2+(y^2-2)^2+1
suy ra Min=1
# mk ko chắc lắm đâu
C=[(x+1)(x-6)][(x-2)(x-3)]
=(x2-5x-6)(x2-5x+6)
=(x2-5x)2-36>=-36
GTNN cua C=-36 tai x2-5x=0=>x(x-5)=0=>x=0 hoac x=5
B=(x-3)2+(x-11)2
=x2-6x+9+x2-22x+121
=2x2-28x+130
=2(x2-14x+65)
=2(x2-2.7x+72-72+65)
=2[(x-7)2-49+65]
=2(x-7)2+32
=> vì 2(x-7)2 >= 0
=>2(x-7)2+32 >= 32
=> GTNN của B=32. Khi x=7
Bài 1:
a) \(25x^2+3-10x=\left(25x^2-10x+1\right)+2=\left(5x-1\right)^2+2>0\)
=>đpcm
b) \(-9x^2-2+6x=-\left(9x^2-6x+1\right)-1=-\left(3x-1\right)^2-1< 0\)
=>đpcm
Bài 2:
\(A=4x^2+3-4x=\left(4x^2-4x+1\right)+2=\left(2x-1\right)^2+2\ge2\)
Vậy \(x=\frac{1}{2}\) thì A đạt GTNN là 2
\(B=-x^2+10x-28=-\left(x^2-10x+25\right)-3=-\left(x-5\right)^2-3\le-3\)
Vậy x=5 thì B đạt GTLN là -3
A = 25x2 + 3 - 10x
= (5x)2 - 2 . 5x . 1 + 1 + 2
= (5x - 1)2 + 2
(5x - 1)2 lớn hơn hoặc bằng 0
(5x - 1)2 + 2 lớn hơn hoặc bằng 2 > 0
Vậy A > 0 vs mọi x (đpcm)
B = - 9x2 - 2 + 6x
= - [(3x)2 - 2 . 3x . 1 + 1 + 1]
= - [(3x - 1)2 + 1]
(3x - 1)2 lớn hơn hoặc bằng 0
(3x - 1)2 + 1 lớn hơn hoặc bằng 1
- [(3x - 1)2 + 1] nhỏ hơn hoặc bằng - 1 < 0
Vậy B < 0 với mọi x (đpcm)
***
A = 4x2 - 4x + 3
= (2x)2 - 2 . 2x . 1 + 1 + 2
= (2x - 1)2 + 2
(2x - 1)2 lớn hơn hoặc bằng 0
(2x - 1)2 + 2 lớn hơn hoặc bằng 2
Min A = 2 khi x = 1/2
B = -x2 + 10x - 28
= - [x2 - 2 . x . 5 + 25 + 3]
= - [(x - 5)2 + 3]
(x - 5)2 lớn hơn hoặc bằng 0
(x - 5)2 + 3 lớn hơn hoặc bằng 3
- [(x - 5)2 + 3] nhỏ hơn hoặc bằng 3
Vậy Max B = 3 khi x = 5
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
A = (2m-5)^2 -(2m+5)^2 +40m
= 4m^2 -20m+25 -(4m^2 +20m+25) + 40m
= 4m^2 -20m+25 -4m^2 -20m -25 + 40m
= 0.
Vậy biểu thức A ko phụ thuộc vào biến.
Bài 2:
Gọi 2 số nguyên liên tiếp là a và a+1 (a thuộc Z)
Ta có: (a+1)^2 -a^2
= a^2 +2a +1- a^2
= 2a+1
Mà 2a+1 là số lẻ nên (a+1)^2 -a^2 là số lẻ.
Vậy hiệu các bình phương của 2 số nguyên liên tiếp là số lẻ.
Bài 3:
P = (3x+4)^2 -10x- (x-4)(x+4)
= 9x^2 +24x +16 -10x - (x^2 -16)
= 9x^2 +24x +16 -10x -x^2 +16
= 8x^2 +14x +32
Bài 4:
Ta có: x^2 -4x+5
= (x^2 -4x+4)+ 1
= (x-2)^2 + 1
Vì (x-2)^2 >=0 với mọi x nên (x-2)^2 + 1 >=1 với mọi x.
Do đó: P = x^2 -4x+5 >=1 với mọi x.
Dấu "=" xảy ra khi: (x-2)^2 = 0
x-2 = 0
x = 2
Vậy GTNN của P là 1 tại x = 2.
Chúc bạn học tốt.
a) Nếu bạn chưa học Bézout - Horner thì giải theo chương trình sgk như sau:
\(x^3-3x^2-x-45\)
\(=x^3-5x^2+2x^2-10x+9x-45\)
\(=x^2\left(x-5\right)+2x\left(x-5\right)+9\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+2x +9\right)\)
Nếu học rồi thì dễ thôi:
\(x^3-3x^2-x-45\)
Nhẩm nghiệm ta được nghiệm x=5
\(\Rightarrow x^3-3x^2-x-45=\left(x-5\right)\left(x^2+2x+9\right)\)
b)+c) (2 câu này mk chỉ giải theo chương trình sgk thôi nhe. Hình như bạn ghi sai đề câu c):
\(6x^3-17x^2+14x-3\)
\(=6x^3-6x^2-11x^2+11x+3x-3\)
\(=6x^2\left(x-1\right)-11x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(6x^2-11x+3\right)\)
\(=\left(x-1\right)\left(6x^2-9x-2x+3\right)\)
\(=\left(x-1\right)\left[3x\left(2x-3\right)-\left(2x-3\right)\right]\)
\(=\left(x-1\right)\left(2x-3\right)\left(3x-1\right)\)
Mk sửa lại nhe: \(4x^3-25x^2-53x-24\)
\(=4x^3-32x^2+7x^2-56x+3x-24\)
\(=4x^2\left(x-8\right)+7x\left(x-8\right)+3\left(x-8\right)\)
\(=\left(x-8\right)\left(4x^2+7x+3\right)\)
\(=\left(x-8\right)\left(4x^2+4x+3x+3\right)\)
\(=\left(x-8\right)\left[4x\left(x+1\right)+3\left(x+1\right)\right]\)
\(=\left(x-8\right)\left(x+1\right)\left(4x+3\right)\)
Nếu bạn muốn giải cách Bézout - Horner thì nhắn cho mk nhe.
a) \(A=25x^2+3y^2-10x+11\)
\(A=\left(5x-1\right)^2+3y^2+11\ge11\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{5}\\y=0\end{matrix}\right.\)
b) \(B=\left(x-3\right)^2+\left(x-11\right)^2\)
\(B=2\left(x^2-14x+65\right)\)
\(B=2\left[\left(x-7\right)^2+16\right]\)
\(B=2\left(x-7\right)^2+32\ge32\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=7\)
c) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt \(x^2-5x-6=a\)
\(C=a\left(a+12\right)\)
\(C=a^2+12a+36-36\)
\(C=\left(a+6\right)^2-36\ge-36\)
Dấu "=" xảy ra \(\Leftrightarrow a=-6\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\\ C=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)\\ C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\\ C=\left(x^2-5x\right)^2-6^2\\ C=\left(x^2-5x\right)^2-36\)
Ta có:
\(\left(x^2-5x\right)^2\ge0\\ \Rightarrow C=\left(x^2-5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi và chỉ khi:
(x2 - 5x)2 = 0 => x2 - 5x = 0 => x(x - 5) = 0
=> x = 5 hoặc x = 0
Vậy MinC = -36 <=> x = 5; x = 0
3, A=(x-3)^2+(x-11)^2
\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)
\(\Rightarrow\)(X^2-9)+(X^2-121)
Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0
\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121
\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130
Dấu = xảy ra khi : X=0
Vậy : Min A = -130 khi x=0
Mình mới lớp 7 sai thì thôi nhé
\(A=25x^2-10x+5=\left(5x-1\right)^2+4\ge4\)
flo giúp nốt câu kia đi :)
A=25x2-10x+5=25x2-10x+1+4=(5x-1)2+4
ta có: (5x-1)2\(\ge0\)
suy ra (5x-1)2+4\(\ge4\) suy ra GTNN là 4
B=t2+12t2-3=13t2-3
ta có: 13t2\(\ge0\)
suy ra 13t2-3\(\ge-3\)suy ra GTNN là -3