K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$

$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$

$\Leftrightarrow x=3; y=-2$

---------------------

$B=9x^2+y^2+2z^2-18x+4z-6y+30$

$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$

$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$

$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$

$\Leftrightarrow x=1; y=3; z=-1$

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$C=x^2+y^2+z^2-xy-yz-xz+3$

$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$

$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$

$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$

$\Rightarrow C\geq 3$

Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$

$\Leftrihgtarrow x=y=z$

--------------------------------------

$D=5x^2+2y^2+4xy-2x+4y+2021$

$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$

$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$

$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$

$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$

Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$

$\Leftrightarrow x=1; y=-2$

8 tháng 9 2021

\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

 

8 tháng 9 2021

a,9x^2+y^2+2z^2−18x+4z−6y+20=0

⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0

⇔x=1;y=3;z=−1

b,5x^2+5y^2+8xy+2y−2x+2=0

⇔4(x+y)2+(x−1)2+(y+1)2=0

⇔x=−y;x=1y=−1⇔x=1y=−1

c,5x^2+2y^2+4xy−2x+4y+5=0

⇔(2x+y)^2+(x−1)^2+(y+2)^2=0

⇔2x=−y;x=1;y=−2

⇔x=1;y=−2

d,x^2+4y^2+z^2=2x+12y−4z−14

⇔(x−1)^2+(2y−3)^2+(z+2)^2=0

⇔x=1;y=3/2;z=−2

e: Ta có: x^2−6x+y2+4y+2=0

⇔x^2−6x+9+y^2+4y+4−11=0

⇔(x−3)^2+(y+2)^2=11

Dấu '=' xảy ra khi x=3 và y=-2

 

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

19 tháng 12 2020

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

19 tháng 12 2020

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

8 tháng 12 2023

Phân tích đa thức thành nhân tử

1: \(x^2-x-y^2-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

2: \(x^2-y^2+x-y\)

\(=\left(x^2-y^2\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+1\right)\)

3: \(3x-3y+x^2-y^2\)

\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)

\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y+3\right)\)

4: \(5x-5y+x^2-y^2\)

\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(5+x+y\right)\)

5: \(x^2-5x-y^2-5y\)

\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

6: \(x^2-y^2+2x-2y\)

\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+2\right)\)

7: \(x^2-4y^2+x+2y\)

\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+1\right)\)

8: \(x^2-y^2-2x-2y\)

\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

9: \(x^2-4y^2+2x+4y\)

\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+2\right)\)

1 tháng 9 2021

a)\(5x^2-4\left(x^2-2x+1\right)-5=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)

b) \(9x^2+6x-4y^2+4y=\left(9x^2+6x+1\right)-\left(4y^2-4y+1\right)=\left(3x+1\right)^2-\left(2y-1\right)^2=\left(3x+1-2y+1\right)\left(3x+1+2y-1\right)=\left(3x-2y+2\right)\left(3x+2y\right)\)

a: \(5x^2-4\left(x^2-2x+1\right)-5\)

\(=5x^2-4x^2+8x-4-5\)

\(=x^2+8x-9\)

\(=\left(x+9\right)\left(x-1\right)\)

b: \(9x^2+6x-4y^2+4y\)

\(=\left(3x+2y\right)\left(3x-2y\right)+2\left(3x+2y\right)\)

\(=\left(3x+2y\right)\left(3x-2y+2\right)\)

19 tháng 7 2021

a) Áp dụng bất đẳng thức Cosi ta có :

\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)

Suy ra \(S\leq 6\)

Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)

 

1 tháng 6 2021

a,x2-y2-2x+2y
= (x+y)(x-y) - 2(x-y)
= (x-y)(x+y-2)
b,2x+2y-x2-xy
= 2(x+y) - x(x+y)
= (x+y)(2-x)
c,3a2-6ab+3b2-12c2
= 3(a2 - 2ab + b2 - 4c2)
= 3[(a-b)2 - 4c2)
= 3(a-b-2c)(a-b+2c)
d,x2-25+y2+2xy
= (x+y)2 - 25
= (x+y+5)(x+y-5)

e) a2+2ab+b2-ac-bc

= (a+b)2-c(a+b)

= (a+b)( a+b-c)

f) x2-2x-4x2-4y

= -3x2-2x-4y

= -(3x2+2x+4y)

g)x2y-x3-9y+9x

= x2(y-x)-9(y-x)

= (y-x)(x2-9)

h) x2(x-1)+16(1-x)

= x2(x-1)-16(x-1)

= (x-1)(x2-16)

= (x-1)(x-4)(x+4)

n) 81x2-6yz-9y2-z2

= (9x)2-[(3y)2+6yz+z2]

=(9x)2-(3y+z)2

=(9x+3y+z)(9x-3y-z)

m) xz- yz-x2+2xy-y2

= z(x-y)-(x2-2xy+y2)

= z(x-y)-(x-y)2

= (x-y)(z-x+y)

 p) x2 + 8x + 15

= x2 + 3x + 5x + 15

= x(x+3) + 5(x+3)

= (x+3)(x+5)

k) x2 - x - 12

= x2 + 3x - 4x - 12

= x(x+3) - 4(x+3)

= (x+3)(x-4)