Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
a, \(\frac{1}{2}-\frac{3}{5}x=4-\frac{1}{3}x\)
<=> \(\frac{1}{2}-\frac{3}{5}x+\frac{1}{3}x=4\)
<=>\(\frac{1}{2}-x.\left(\frac{3}{5}-\frac{1}{3}\right)=4\)
<=>\(\frac{1}{2}-\frac{4}{15}x=4\)
<=>\(\frac{4}{15}x=\frac{1}{2}-4\)
<=>\(\frac{4}{15}x=\frac{-7}{2}\)
<=> x = \(\frac{-7}{2}:\frac{4}{15}\)
<=> x = \(\frac{-7}{2}.\frac{15}{4}\)
<=> x = \(\frac{-105}{8}\)
b,\(\left(x^2-5\right).x^2=0\)
<=> \(x^2-5=0:x^2\)
<=>\(x^2-5=0\)
<=> \(x^2=5\)
<=> x = 5:x
c, 2 . I x - \(\frac{1}{2}\)I = \(\frac{-1}{3}+5\frac{1}{3}\)
<=>2 . I x - \(\frac{1}{2}\)I = \(\frac{-1}{3}+\frac{5}{3}\)
<=>2 . I x - \(\frac{1}{2}\)I = \(\frac{4}{3}\)
<=> I x - \(\frac{1}{2}\)I = \(\frac{4}{3}:2\)
<=> I x - \(\frac{1}{2}\)I = \(\frac{4}{3}.\frac{1}{2}\)
<=> I x - \(\frac{1}{2}\)I = \(\frac{2}{3}\)
=> x - \(\frac{1}{2}\)= \(\frac{2}{3}\)hoặc x - \(\frac{1}{2}\)= \(\frac{-2}{3}\)
TH1: x -\(\frac{1}{2}\) = \(\frac{2}{3}\)
<=> x = \(\frac{2}{3}\)+ \(\frac{1}{2}\)
<=> x = \(\frac{7}{6}\)
TH2: x - \(\frac{1}{2}\)= \(\frac{-2}{3}\)
<=> x = \(\frac{-2}{3}\)+ \(\frac{1}{2}\)
<=> x = \(\frac{-1}{6}\)
d) I 2x - 3 I - x = 6
=> 2x - 3 - x = 6 hoặc 2x - 3 - x = - 6
TH1:2x - 3 - x = 6
<=> x - 3 = 6
<=> x = 6 + 3
<=> x = 9
TH2: 2x - 3 - x = - 6
<=> x - 3 = -6
<=> x = - 6 + 3
<=> x = - 3
+ I 2x - 3 I
CÁC BN GIÚP MK VS NHA !!!!! MK DAG CẦN CỰC KỲ GẤP ĐÓ Ạ , AI GIẢI DC HẾT CHỖ NÀY SẼ DC K 3 CÁI ĐÓ Ạ !!!! CÁM ƠN MỌI NGƯỜI TRƯỚC Ạ ^^
\(a)\) Ta có :
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
Bài 1:
a: =>13x+8=9x+20
=>4x=12
hay x=3
b: \(\Leftrightarrow5x-7=-8-11-3x\)
=>5x-7=-3x-19
=>8x=-12
hay x=-3/2
c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)
e: =>3x+1=-5
=>3x=-6
hay x=-2
a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)
\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)
=>x=10
b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)
hay \(x\in\left\{0;1;2\right\}\)
c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)
\(\Leftrightarrow6-x=0\)
hay x=6
***********************************************************
a) Ta có: \(\dfrac{x+12}{10-x}=-\dfrac{x-10+22}{x-10}=-1+\dfrac{22}{x-10}\)
Vì \(\left(x+12\right)⋮\left(10-x\right)\) nên \(22⋮\left(x-10\right)\)
Do đó ta có bảng:
x-10 | -22 | -11 | -2 | -1 | 1 | 2 | 22 |
x | -12 | -1 | 8 | 9 | 11 | 12 | 32 |
Vậy \(x\in\left\{-12;-1;8;9;11;12;32\right\}\)
c) \(\left(x-3\right)⋮\left(x+1\right)\)
=> \(\left(x-3\right)-\left(x+1\right)⋮\left(x+1\right)\)
=> \(\left(x-3-x-1\right)⋮\left(x+1\right)\)
=>\(-4⋮\left(x+1\right)\)
=> x+1\(\in\) ư(-4)= \(\left\{\pm1,\pm2,\pm4\right\}\)
ta có bảng sau
x+1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -5 | -3 | -2 | 0 | 1 | 3 |
vậy x\(\in\left\{-5,-3;-2;0;1;3\right\}\)
a) Đặt \(A=\left|x+2\right|+\left|y-4\right|-6\)
Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|y-4\right|\ge0\end{cases}}\Rightarrow A\ge-6\)
\(\Rightarrow A_{min}=-6\Leftrightarrow\hept{\begin{cases}x=-2\\x=4\end{cases}}\)
b) Đặt \(B=x^2+3\)
Ta có: \(x^2\ge0\Rightarrow B\ge3\)
\(\Rightarrow B_{min}=3\Leftrightarrow x=0\)
c) Đặt \(C=\left(x-1\right)^2-3\)
Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow C\ge-3\)
\(\Rightarrow C_{min}=-3\Leftrightarrow x=1\)
d) Đặt \(D=\left|x-2\right|+y^2+1\)
Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge0\\y^2\ge0\end{cases}}\Rightarrow D\ge1\)
\(\Rightarrow D_{min}=1\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)