Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(A=\left|x+2\right|+\left|y-4\right|-6\)
Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|y-4\right|\ge0\end{cases}}\Rightarrow A\ge-6\)
\(\Rightarrow A_{min}=-6\Leftrightarrow\hept{\begin{cases}x=-2\\x=4\end{cases}}\)
b) Đặt \(B=x^2+3\)
Ta có: \(x^2\ge0\Rightarrow B\ge3\)
\(\Rightarrow B_{min}=3\Leftrightarrow x=0\)
c) Đặt \(C=\left(x-1\right)^2-3\)
Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow C\ge-3\)
\(\Rightarrow C_{min}=-3\Leftrightarrow x=1\)
d) Đặt \(D=\left|x-2\right|+y^2+1\)
Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge0\\y^2\ge0\end{cases}}\Rightarrow D\ge1\)
\(\Rightarrow D_{min}=1\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Bài 1
a) \(\frac{5}{6}=\frac{x-1}{x}\)
<=> 5x=6x-6
<=> 5x-6x=-6
<=> -11x=-6
<=> \(x=\frac{6}{11}\)
b)c)d) nhân chéo làm tương tự
\(a)\frac{x}{8}=\frac{-30}{y}=\frac{-48}{32}\)
Rút gọn : \(\frac{-48}{32}=\frac{(-48):16}{32:16}=\frac{-3}{2}\)
* Ta có : \(\frac{x}{8}=\frac{-3}{2}\)
\(\Rightarrow x\cdot2=-3\cdot8\)
\(\Rightarrow x=\frac{-3\cdot8}{2}=-12\)
* Ta có : \(\frac{-30}{y}=\frac{-3}{2}\)
\(\Rightarrow-30\cdot2=-3\cdot y\)
\(\Rightarrow y=\frac{-30\cdot2}{-3}=20\)
Mấy bài kia làm tương tự
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
1)
A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)
A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)
A = \(\frac{1}{1}-\frac{1}{101}\)
A = \(\frac{100}{101}\)
Vậy A = \(\frac{100}{101}\)
B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}.\frac{100}{101}\)
B = \(\frac{250}{101}\)
Vậy B = \(\frac{250}{101}\)
2)
Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản
Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ...
\(a,\)\(|x|+1\)
Vì \(|x|>0\)
\(\Rightarrow|x|+1\)Nhỏ nhất \(\Leftrightarrow x=0\)
\(\Rightarrow|x|+1=1\Leftrightarrow x=0\)
\(b,\)\(|2x-3|\)
Vì \(|2x-3|\ge0\Rightarrow\)Nhỏ nhất \(\Leftrightarrow2x-3=0\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\frac{3}{2}\)