Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = |x - 3| + 10
Vì |x - 3| >= 0
=> A = |x - 3| + 10 >= 10
A = 10 <=> |x - 3| = 0=> x - 3 = 0 => x = 3
Vậy: Amin = 10 <=> x = 3
b) B = -7 + (x - 1)2
Vì (x - 1)2 >= 0
=> B = -7 + (x - 1)2 >= -7
B = -7 <=> (x - 1)2 = 0 => x - 1 = 0 => x = 1
Vậy: Bmin = -7 <=> x = 1
a) \(2\left(x+5\right)-3x=2x+1\)
\(\left(x+2\right)+\left(x-2x+1\right)\ge0\)
\(=\left(x+2\right)+\left(x-2+1\right)-3\ge-1\)
b)
Bài này ta sử dụng kĩ thuật tham số hóa.
Giả sử A đạt GTNN tại a= x, b= y, c= z khi đó x + y +z = 3. (1)
Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:
a2+x2≥2axa2+x2≥2ax. 4a2≥8ax−4x24a2≥8ax−4x2.
b2+y2≥2byb2+y2≥2by. => 6b2≥12by−6y26b2≥12by−6y2.
c2+z2≥2zc2+z2≥2z. 3c2≥6cz−3z23c2≥6cz−3z2.
=> A≥(8ax+12by+6cz)−(4x+6y+3z)A≥(8ax+12by+6cz)−(4x+6y+3z).
Để sử dụng được GT thì 8x = 12y = 6z. (2)
Từ (1); (2) ta tìm ra được x, y, z=>...
c,d chịu
\(x=-1\)
a) A = | x - 3 | + 1
| x - 3 |\(\ge\)0
Nên | x - 3 |+1\(\ge\)1
Dấu = xảy ra khi x-3=0 hay x=3
Vậy GTNN của A=1 khi x=3
b ) B = | 6 - 2x | - 5
| 6 - 2x |\(\ge\)0
Nên |6-2x|-5\(\ge\)-5
Dấu = xảy ra khi 6-2x=0 hay x=3
Vậy GTNN của B=-5 khi x=3
c ) C = - ( x + 1 ) 2 - |2y - y | + 11
Vì ( x + 1 ) 2\(\ge\)0
Nên -( x + 1 ) 2\(\le\)0
Vì |2y - y |\(\ge\)0
Nên - |2y - y |\(\le\)0
C = - ( x + 1 ) 2 - |2y - y | + 11 \(\le\)11
Dấu = xảy ra khi x+1=0 và 2y-y=0 hay x=-1;y=0
Vậy GTLN của C=11 khi x=-1 và y=0
d ) D = ( x + 5 )2 + (2y - 6 )2 + 1
Vì ( x + 5 )2 \(\ge\)0
(2y - 6 )2 \(\ge\)0
D = ( x + 5 )2 + (2y - 6 )2 + 1\(\ge\)1
Vậy dấu = xảy ra khi x+5=0;2y-6=0 hay x=-5;y=3
Vậy GTNN của D=1 khi x=-5;y=3
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
a, \(\left(x-1\right)\left(y+1\right)=5\)
\(\Leftrightarrow x-1;y+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x - 1 | 1 | -1 | 5 | -5 |
y + 1 | 5 | -5 | 1 | -1 |
x | 2 | 0 | 6 | -4 |
y | 4 | -6 | 0 | -2 |
d, \(\left(3-x\right)\left(xy+5\right)=-1\)
\(\Leftrightarrow3-x;xy+5\inƯ\left(-1\right)=\left\{\pm1\right\}\)
3 - x | 1 | -1 |
xy + 5 | -1 | 1 |
x | 2 | 4 |
y | -3 | -1 |
f, \(\left(x-7\right)\left(y+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\y+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\y=-2\end{cases}}}\)
Bn làm nốt nhé !
a, \(\left(x-1\right)\left(y+1\right)=5\)
\(< =>\left(x-1\right)\left(y+1\right)=1.5=5.1=-1.\left(-5\right)=-5.\left(-1\right)\)
x-1 | 1 | 5 | -1 | -5 | |||
y+1 | 5 | 1 | -5 | -1 | |||
x | 2 | 6 | 0 | -4 | |||
y | 4 | 0 | -6 | -2 |
Vậy ta có các cặp số x,y thỏa mãn đk sau : ...
b, \(\left(x+2\right)\left(y-3\right)=-3\)
\(< =>\left(x+2\right)\left(y-3\right)=-1.3=-3.1\)
x+2 | -1 | -3 | |
y-3 | 3 | 1 | |
x | -3 | -5 | |
y | 6 | 4 |
Vậy ta có các cặp số x,y thỏa mãn đk sau : ...
c, \(\left(x+2\right)\left(y-1\right)=3\)
\(< =>\left(x+2\right)\left(y-1\right)=1.3=3.1=-1.\left(-3\right)=-3.\left(-1\right)\)
x+2 | 1 | 3 | -1 | -3 |
y-1 | 3 | 1 | -3 | -1 |
x | -1 | 1 | -3 | -5 |
y | 4 | 2 | -2 | 0 |
Vậy ta có các cặp số x,y thỏa mãn đk sau : ...
d,\(\left(3-x\right)\left(xy+5\right)=-1\)
\(< =>\left(3-x\right)\left(xy+5\right)=1.\left(-1\right)=-1.1\)
3-x | -1 | 1 | |
xy+5 | 1 | -1 | |
x | 4 | 2 | |
xy | -4 | -6 | |
y | -1 | -3 |
Vậy ta có các cặp số x,y thỏa mãn đk sau : ...
2 câu sau dễ tự làm