Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1.Đặt \(A=x^2+y^2-3x+2y+3\)
\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)
\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)
\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)
Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)
Hay \(A\ge\frac{-1}{4};\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)
VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)
a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x=2;y=1
b) tương tự câu a
c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)
\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)
\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi x=2;y=1
Giải sơ qua:
1)\(B=4x^2-4xy+2y^2+1=\left(2x-y\right)^2+y^2+1\ge1\)
2) có vẻ sai đề
1,
4x2+2y2+4xy-4x-6y+2019
=4x2+(4xy-4x)+(y2-2y+1)+(y2-4y+4)+2014
=4x2+2.2x(y-1)+(y-1)+(y-2)2+2014
=(2x+y-1)2+(y-2)2+2014>=2014
vì (2x+y-1)2 >=0 với mọi x,y
(y-2)2 >=0 với mọi y
dấu "=" xảy ra khi y-2=0 suy ra y=2
và 2x+y-1=0 suy ra x=-1/2
vậy 4x4+2y2+4xy -4x-6y+2019 min =2014 khi và chỉ khi x=-1/2,y=2
2,
ta có x2-6x+10=(x-3)2+1>=1
vì (x-3)2>=0 với mọi x
=> 1/x2-6x+10<=1(theo tính chất thì với a>=b thì 1/a<=1/b với a,b cùng dấu)
=> -3/x2-6x+10>=-3
dấu "="xảy ra khi x-3=0 =>x=3
vậy -3/x2-6x+10 min=-3 <=>x=3
\(M=4x^2+4xy+2y\left(y-2\right)=4x^2+4xy+2y^2-4y.\)
\(=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-4\)
\(=\left(2x+y\right)^2+\left(y-2\right)^2-4\ge-4\)
MinM=-4
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x-y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)
\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)
\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)
\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=-1 và y=0
Bài làm:
Ta có: \(4x^2+2y^2+4xy-4x-8y+15\)
\(=\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1+y^2-6y+9+5\)
\(=\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(y-3\right)^2+5\)
\(=\left(2x+y-1\right)^2+\left(y-3\right)^2+5\ge5\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x+y-1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)
Vậy \(Min=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)
4x2 + 2y2 + 4xy - 4x - 8y + 15
= [ ( 4x2 + 4xy + y2 ) - 2( 2x + y ) + 1 ] + ( y2 - 6y + 9 ) + 5
= ( 2x + y - 1 )2 + ( y - 3 )2 + 5
\(\hept{\begin{cases}\left(2x+y-1\right)^2\ge0\forall x,y\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(2x+y-1\right)^2+\left(y-3\right)^2+5\ge5\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+y-1=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)
Vậy GTNN của biểu thức = 5 <=> x = -1 ; y = 3