\(\frac{-3}{x^2-6x+10}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

1,

    4x2+2y2+4xy-4x-6y+2019

=4x2+(4xy-4x)+(y2-2y+1)+(y2-4y+4)+2014

=4x2+2.2x(y-1)+(y-1)+(y-2)2+2014

=(2x+y-1)2+(y-2)2+2014>=2014

vì (2x+y-1)2 >=0 với mọi x,y

    (y-2)>=0 với mọi y

dấu "=" xảy ra khi  y-2=0 suy ra y=2

                      và 2x+y-1=0 suy ra x=-1/2

vậy 4x4+2y2+4xy -4x-6y+2019 min =2014 khi và chỉ khi x=-1/2,y=2

2,

         ta có x2-6x+10=(x-3)2+1>=1

vì (x-3)2>=0 với mọi x

 => 1/x2-6x+10<=1(theo tính chất thì với a>=b thì 1/a<=1/b với a,b cùng dấu)

=> -3/x2-6x+10>=-3

 dấu "="xảy ra khi x-3=0 =>x=3

vậy -3/x2-6x+10 min=-3 <=>x=3

13 tháng 6 2017

a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)

\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x=2;y=1

b) tương tự câu a

16 tháng 6 2017

c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)

\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)

\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)

\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)

Dấu "=" xảy ra khi x=2;y=1

6 tháng 7 2019

Ta có D=4x2+2y2+4xy-2x-6y+10

​​\(\Leftrightarrow\left(2x\right)^2+2.2x.y+y^2+y^2+2.y.3+3^2+1\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(y+3\right)^3+1\)

Vì \(\left(2x+y\right)^2\)và \(\left(y+3\right)^2\ge0\)nên\(D\ge1với\forall x,y\)

Dấu = xảy ra khi \(x=\frac{3}{2}\)và \(y=-3\)

Vậy D đạt giá trị nhỏ nhất bằng 1 khi\(x=\frac{3}{2}:y=-3\)

chúc bạn học tốt

6 tháng 7 2019

\(D=\left(4x^2+2.2x.y+y^2\right)-\left(2x+y\right)+y^2-5y+10\)

\(=\left(2x+y\right)^2-2.\left(2x+y\right).\frac{1}{2}+\frac{1}{4}+\left(y^2-2.y.\frac{5}{2}+\frac{25}{4}\right)+\frac{7}{2}\)

\(=\left(2x+y-\frac{1}{2}\right)^2+\left(y-\frac{5}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}\)

Đẳng thức xảy ra khi y = 5/2 và \(x=\frac{1}{2}\left(\frac{1}{2}-y\right)=-1\)

vậy..

21 tháng 12 2019

1 a) Tìm giá trị nhỏ nhất của biểu thức:

\(A=x^2-6x+2\)

\(=\left(x-3\right)^2-7\ge-7\)

\(B=4x^2-x+2\)

\(=4\left(x-\frac{1}{8}\right)^2+\frac{31}{16}\ge\frac{31}{16}\)

\(C=4x^2+2y^2+4xy-4x-6y+2019\)

\(=4x^2+4x\left(y-1\right)+\left(y-1\right)^2+y^2-4y+4+2014\)

\(=\left(2x+y-1\right)^2+\left(y-2\right)^2+2014\ge2014\)

\(D=\frac{-3}{x^2-6x+10}\)

\(=\frac{-3}{\left(x-3\right)^2+1}\ge3\)

21 tháng 12 2019

Violympic toán 8

22 tháng 7 2018

\(B=5-8x+x^2=x^2-8x+16-11=\left(x-4\right)^2-11\)

Vậy giá trị nhỏ nhất của B là -11 khi x = 4

22 tháng 7 2018

\(C=x^2+y^2-6x+5y+1=\left(x^2-6x+9\right)+\left(y^2+5y+\frac{25}{4}\right)-\frac{57}{4} \)

                                                           \(=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2-\frac{57}{4}\)

Vậy GTNN của C là \(-\frac{57}{4}\)khi x = 3; y = \(-\frac{5}{2}\)

a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)

(tự rút gọn cái :P)

b, \(8x^3+4x^2y-2xy^2-y^3\)

\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)

\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)

\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)

Mấy cái còn lại nhân tung ra là được mà :))))

21 tháng 2 2020

làm luôn đi cậu

13 tháng 6 2017

a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)

\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)

\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)

\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)

Dấu "=" xảy ra khi x=-1 và y=0

13 tháng 6 2017

b)\(5x^2+y^2+2xy-4x=\left(x^2+2xy+y^2\right)+\left(4x^2-4x+1\right)-1\)

\(=\left(x+y\right)^2+\left(2x-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi x=1/2 và y=-1/2