K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

A=[2(x^2-8x+22)-1]/(x^2-8x+22)

A=2-1/[(x-4)^2+6]

A nho nhat khi (x-4)^2=0=> x=4

min(A)=2-1/6

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

13 tháng 2 2017

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

24 tháng 2 2018

1. = ( |3x-1|^2 - 4|3x-1| + 4 ) + 1

    = (|3x-1|-2)^2 + 1 >= 1

Dấu "=" xảy ra <=> |3x-1|-2 = 0 <=> x=1 hoặc x=-1/3

Vậy .........

Tk mk nha 

23 tháng 2 2018

1. Đặt 3x-1 = t 

+ Nếu t\(\ge0\)ta có A= t\(^2\)-4t + 5 = \(\left(t-2\right)^2+1\ge1\Leftrightarrow A=1\Leftrightarrow t=2\)Vậy A min=1 khi x=1 thỏa mãn 

2. Hình như tìm GTLN phải k pạn Nếu vậy Bmax=-4 khi x= 1/3 nhé 

k cho tớ nhé  

31 tháng 10 2021
(3x-2)(2x-4)=1-12x²
25 tháng 7 2018

\(a,A=9x^2+5-6x=9x^2-6x+1+4\)

\(=\left(3x-1\right)^2+4\)

Vì: \(\left(3x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow\)GTNN của A là 4 tại \(\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)

b,\(B=1+x^2-x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow\)GTNN của B là 3/4 tại \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

Các phần cn lại lm tg tự nha bn

28 tháng 10 2020

( 3x - 2 )( 9x2 + 6x + 4 ) - ( 2x - 5 )( 2x + 5 ) = ( 3x - 1 )3 - ( 2x + 3 )2 + 9x( 3x - 1 )

⇔ 27x3 - 8 - ( 4x2 - 25 ) = 27x3 - 27x2 + 9x - 1 - ( 4x2 + 12x + 9 ) + 27x2 - 9x

⇔ 27x3 - 8 - 4x2 + 25 = 27x3 - 1 - 4x2 - 12x - 9

⇔ 27x3 - 4x2 + 17 - 27x3 + 4x2 + 12x + 10 = 0

⇔ 12x + 27 = 0

⇔ 12x = -27

⇔ x = -27/12 = -9/4