\(x^2+6x\)

\(x^2+3x-5\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

\(A=x^2+6x\)

\(A=x^2+6x+9-9\)

\(A=\left(x+3\right)^2-9\ge-9\)

Dấu "=" xảy ra khi: \(x=-3\)

\(B=x^2+3x-5\)

\(B=x^2+3x+\dfrac{9}{4}-\dfrac{29}{4}\)

\(B=\left(x+\dfrac{3}{2}\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\)

Dấu "=" xảy ra khi: \(x=-\dfrac{3}{2}\)

\(C=x^2+17x+6\)

\(C=x^2+17x+\dfrac{289}{4}-\dfrac{265}{4}\)

\(C=\left(x+\dfrac{17}{2}\right)^2-\dfrac{265}{4}\ge-\dfrac{265}{4}\)

Dấu "=" xảy ra khi: \(x=-\dfrac{17}{2}\)

6 tháng 9 2017

a) Đặt \(A=x^2+6x=x^2+6x+9-9=\left(x+3\right)^2-9\)

\(\left(x+3\right)^2\ge0\forall x\Rightarrow\left(x+3\right)^2-9\ge-9\)

''='' xảy ra khi \(x+3=0\Rightarrow x=-3\)

Vậy \(A_{MIN}=-9\) khi x = -3

b) Đặt \(B=x^2+3x-5=x^2+2\cdot x\cdot1,5+2,25-\dfrac{29}{4}\)

\(=\left(x+1,5\right)^2-\dfrac{29}{4}\)

\(\left(x+1,5\right)^2\ge0\forall x\Rightarrow\left(x+1,5\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\)

''='' xảy ra khi x + 1,5 = 0 => x = -1,5

Vậy \(B_{MIN}=-\dfrac{29}{4}\) khi \(x=-1,5\)

c) Đặt \(C=x^2+17x+6=x^2+2\cdot x\cdot8,5+72,25-\dfrac{265}{4}\)

\(=\left(x+8,5\right)^2-\dfrac{265}{4}\)

\(\left(x+8,5\right)^2\ge0\forall x\Rightarrow\left(x+8,5\right)^2-\dfrac{265}{4}\ge-\dfrac{265}{4}\)

''='' xảy ra khi x = -8,5

Vậy...............

12 tháng 7 2017

\(C=x^2-3x+5\)

\(=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

\(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)

\(\Rightarrow C\ge\dfrac{11}{4}\forall x\)

Dấu "=" xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)

Vậy \(MIN_C=\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{2}.\)

\(D=3x^2-6x-1\)

\(=3\left(x^2-3x-\dfrac{1}{3}\right)\)

\(=3\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{31}{12}\right)\)

\(=3\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{31}{12}\right]\)

\(=3\left(x-\dfrac{3}{2}\right)^2-\dfrac{31}{4}\)

.......

Vậy \(MIN_D=\dfrac{-31}{4}\) khi \(x=\dfrac{3}{2}.\)

\(E=2x^2-6x\)

\(=2\left(x^2-3x\right)\)

\(=2\left[\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{9}{4}\right]\)

\(=2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

.....

Vậy \(MIN_E=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}.\)

20 tháng 4 2018

\(M\left(x\right)=P\left(x\right)+Q\left(x\right)=2,5x^6-4+2,5x^5-6x^3+2x^2\)-5x+\(3x-2,5x^6-x^2+5-2,5x^5+6x^3\)

=\(\left(2,5x^6-2,5x^6\right)\)+\(\left(2,5x^5-2,5x^5\right)\)\(\left(-6x^3+6x^3\right)\)+\(\left(2x^2-x^2\right)\)+\(\left(-5x+3x\right)\)+(-4+5)

= \(x^2-2x+1\)

3 tháng 9 2018

\(A=\frac{x^2-10x+36}{x-5}=\frac{x^2-10x+25+9}{x-5}\) \(=\frac{\left(x-5\right)^2+9}{x-5}=x-5+\frac{9}{x-5}\)

để \(A\in Z\)

<=> \(\frac{9}{x-5}\in Z\)mà \(x\in Z\)

=> \(x-5\inƯ\left(9\right)\)

=> \(x-5\in\left(1;-1;3;-3;9;-9\right)\)

=> \(x\in\left(6;4;8;2;14;-4\right)\)

học tốt

23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

24 tháng 7 2019

a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)

b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)

c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)

\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)

d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)

\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)

24 tháng 7 2019

a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)

<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)

<=> \(\sqrt{x}+8=28\)

<=> \(\sqrt{x}=28-8\)

<=> \(\sqrt{x}=20\)

<=> \(\left(\sqrt{x}\right)^2=20^2\)

<=> x = 400

=> x = 400

b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)

<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)

<=> \(3\sqrt{x}+5=\sqrt{x}+12\)

<=> \(3\sqrt{x}=\sqrt{x}+12-5\)

<=> \(3\sqrt{x}=\sqrt{x}+7\)

<=> \(3\sqrt{x}-\sqrt{x}=7\)

<=> \(2\sqrt{x}=7\)

<=> \(\sqrt{x}=\frac{7}{2}\)

<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)

<=> \(x=\frac{49}{4}\)

=> \(x=\frac{49}{4}\)

c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)

<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)

<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)

<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)

<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)

<=> \(8\sqrt{x}=6\sqrt{x}+4\)

<=> \(8\sqrt{x}-6\sqrt{x}=4\)

<=> \(2\sqrt{x}=4\)

<=> \(\sqrt{x}=2\)

<=> \(\left(\sqrt{x}\right)^2=2^2\)

<=> x = 4

=> x = 4

d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)

<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)

<=>\(2\sqrt{3x}=6\sqrt{3x}\)

<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)

<=>\(-4\sqrt{3x}=0\)

<=> \(\sqrt{3x}=0\)

<=> \(\left(\sqrt{3x}\right)^2=0^2\)

<=> 3x = 0

<=> x = 0

=> x = 0

25 tháng 5 2020

hangbich ơi chị nhớ em không????

25 tháng 5 2020

luonghong567 ở trong hoidap247.com ý