K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

Dat A=x2+2xy+y2-2x-2y=[(x+y)2-2(x+y)+1]-1>=-1

minA=-1 khi x+y=1

29 tháng 7 2018

a, = x^2 -2xy +y^2 +(x^2-2x+1)+2

    = (x-y)^2 + (x-1)^2 + 2

GTNN bằng 2 khi: x-y=0 và x-1=0

Suy ra: x = y = 1

Vậy GTNN của biểu thức trên là: 2 tại x=y=1

b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17

    = -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17

    = -(x-y+1)^2 -(y-4)^2 +17

GTLN bằng 17 khi: x-y+1 =0 và y-4=0

                                   x-4+1=0 và y=4

                                   x=3 và y=4

Vậy GTLN của biểu thức là 17 tại x=3,y=4.

Chúc bạn học tốt.

16 tháng 7 2015

Cách giải ĐTV

16 tháng 7 2015

GTNN = -1    

5 tháng 8 2017

a)  ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014 

Đăngt thức xay ra khi x=y=1

11 tháng 5 2019

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

12 tháng 5 2019

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2021

Lời giải:

$2Q=2x^2+2xy+2y^2-6x-6y+3998$

$=(x^2+2xy+y^2)+x^2+y^2-6x-6y+3998$

$=(x+y)^2-4(x+y)+(x^2-2x)+(y^2-2y)+3998$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+3992$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+3992\geq 3992$

$\Rightarrow Q\geq 1996$

Vậy $Q_{\min}=1996$ khi $x+y-2=x-1=y-1=0\Leftrightarrow x=y=1$

------------------

$R=(x^2+2xy+y^2)+x^2-2x+2y+15$

$=(x+y)^2+2(x+y)+x^2-4x+15$

$=(x+y)^2+2(x+y)+1+(x^2-4x+4)+10$

$=(x+y+1)^2+(x-2)^2+10\geq 10$
Vậy $R_{\min}=10$ khi $x+y+1=x-2=0$

$\Leftrightarrow x=2; y=-3$

11 tháng 8 2023

cho em hỏi khúc này là sao ạ:

=(x+y−2)^2+(x−1)^2+(y−1)^2+3992≥3992
      ^     
      |      em chỉ chx hiểu khúc này thôi

9 tháng 11 2017

a, A = (x^2-3x)^2 - 1 >=-1 

Dấu "=" xảy ra <=> x^2-3x = 0 <=>x.(x-3) = 0 <=> x=3 hoặc x=0

Vậy Min A = -1 <=> xz=3 hoặc x=0

b, Đề thiếu kìa bạn ơi