Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A^2=\left(\sqrt{2}.\sqrt{2}x+1.\sqrt{4-2x^2}\right)^2\le\left(\sqrt{2}^2+1^2\right)\left(2x^2+4-2x^2\right)=12\)
\(\Rightarrow\left|A\right|\le\sqrt{12}=2\sqrt{3}\)
\(\Rightarrow-2\sqrt{3}\le A\le2\sqrt{3}\)
Từ đó tìm được Max Min
a/ \(A=\frac{1}{5+2\sqrt{6-x^2}}\)
Có: \(-x^2\le0\)với mọi x
=> \(6-x^2\le6\)
=> \(0\le\sqrt{6-x^2}\le\sqrt{6}\)
=> \(5\le5+2\sqrt{6-x^2}\le5+2\sqrt{6}\)
=> \(\frac{1}{5+2\sqrt{6}}\le\frac{1}{5+2\sqrt{6-x^2}}\le\frac{1}{5}\); với mọi x
=> \(\hept{\begin{cases}maxA=\frac{1}{5}\Leftrightarrow\sqrt{6-x^2}=0\Leftrightarrow x=\pm\sqrt{6}\\minA=\frac{1}{5+2\sqrt{6}}\Leftrightarrow\sqrt{6-x^2}=\sqrt{6}\Leftrightarrow x=0\end{cases}}\)
Vậy:...
b/ \(B=\sqrt{-x^2+2x+4}=\sqrt{-\left(x-1\right)^2+5}\)
Có: \(-\left(x-1\right)^2\le0\)với mọi x
=> \(-\left(x-1\right)^2+5\le5\)
=> \(0\le\sqrt{-\left(x-1\right)^2+5}\le\sqrt{5}\)
=> \(0\le B\le\sqrt{5}\)với mọi x
=> \(\hept{\begin{cases}maxB=\sqrt{5}\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x=1\\minB=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x=\pm\sqrt{5}+1\end{cases}}\)
Vậy:...
a)Ta có:
\(0\le2\sqrt{6-x^2}\le2\sqrt{6}\)
\(\Leftrightarrow\frac{1}{5}\ge\frac{1}{5+2\sqrt{6-x^2}}\ge\frac{1}{5+2\sqrt{6}}=5-2\sqrt{6}\)
\(\Rightarrow\hept{\begin{cases}MAX\left(A\right)=\frac{1}{5}\\MIN\left(A\right)=5-2\sqrt{6}\end{cases}}\)Dấu "=" xảy ra khi \(\hept{\begin{cases}x=0\left(MIN\right)\\x=\sqrt{6}\left(MAX\right)\end{cases}}\)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
\(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
\(\sqrt{\left(x-1\right)^2+4}\ge2\)
\(\sqrt{x^2-2x+5}\ge2\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
đk: \(-\sqrt{5}\le x\le\sqrt{5}\)
*) Ta có: \(M^2=\left(2x+\sqrt{5-x^2}\right)^2\le\left(2^2+1^2\right)\left(x^2+5-x^2\right)=25\Rightarrow M^2\le25\Rightarrow-5\le M\le5\)
Nếu M=5 thì \(M^2=25\)
Dấu '=' xảy ra khi và chỉ khi \(\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)
Vậy Max M=5 khi x=2
*) Theo trên thì \(-5\le M\le5\)nhưng GTNN của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\Rightarrow M\ge-2\sqrt{5}\)
Vậy Min M = \(-2\sqrt{5}\)khi \(x=-\sqrt{5}\)
ĐK: \(-\sqrt{5}\le x\le\sqrt{5}\)
Ta có \(M^2=\left(2x+\sqrt{5-x^2}\right)\le\left(2^2+1\right)\left(x^2+5-x^2\right)=25\)
\(\Rightarrow M\le25\Rightarrow-5\le M\le5\)
Nếu M=5 thì M2=25 dấu BĐT xảy ra \(\Leftrightarrow\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)
vậy maxM=5 khi x=2
Theo trên thì -5 \(\le M\le5\)nhưng giá trị nhỏ nhất của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\)=> M\(\ge-2\sqrt{5}\)
Vậy minM=\(-2\sqrt{5}\)khi x\(=-\sqrt{5}\)