\(\sqrt{x+3}+\sqrt{6_{ }-x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

ĐKXĐ: \(-3\le x\le6\)

Gọi A là tên hàm số trên

\(A=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)

\(\Rightarrow A_{min}=3\) khi \(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x+3\right)\left(6-x\right)}=3\sqrt{2}\)

\(\Rightarrow A_{max}=3\sqrt{2}\) khi \(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)

11 tháng 2 2020

Đặt A = \(\sqrt{x+3}+\sqrt{6-x}\) ĐKXĐ: \(-3\le x\le6\)

\(A^2=x+3+6-x+2\sqrt{\left(x+3\right)\left(6-x\right)}\)

\(=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\ge9\)

\(\Rightarrow A\ge3\)

Vậy min A = 3 ⇔\(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)(thỏa mãn)

Mặt khác \(A^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\le9+x+3+6-x=18\)

\(\Rightarrow A\le3\sqrt{2}\)

Vậy maxA = \(3\sqrt{2}\)\(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)(thỏa mãn)

9 tháng 2 2020

+ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-3\\y\ge-4\end{matrix}\right.\)

\(gt\Rightarrow x+y=6\left(\sqrt{x+3}+\sqrt{4+y}\right)\le6\sqrt{2\left(x+y+7\right)}\)

\(\Rightarrow\left(x+y\right)^2\le72\left(x+y+7\right)\)

\(\Rightarrow\left(x+y\right)^2-72\left(x+y\right)-504\le0\)

\(\Rightarrow\left(x+y-36\right)^2\le1800\Rightarrow P\le36+30\sqrt{2}\)

max \(P=36+30\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+3=y+4\\x+y=36+30\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{37}{2}+15\sqrt{2}\\y=\frac{35}{2}+15\sqrt{2}\end{matrix}\right.\)

+ \(x+y=6\left(\sqrt{x+3}+\sqrt{y+4}\right)\)

\(\Rightarrow\left(x+y\right)^2=36\left(x+y+7+2\sqrt{\left(x+3\right)\left(y+4\right)}\right)\)

\(\Rightarrow\left(x+y\right)^2-36\left(x+y\right)-252=72\sqrt{\left(x+3\right)\left(y+4\right)}\ge0\)

\(\Rightarrow\left(x+y-42\right)\left(x+y+6\right)\ge0\Rightarrow x+y\ge42\)

Min \(P=42\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+3\right)\left(y+4\right)}=0\\x+y=42\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=45\end{matrix}\right.\\\left\{{}\begin{matrix}x=46\\y=-4\end{matrix}\right.\end{matrix}\right.\)

NV
12 tháng 2 2020

Cần thêm điều kiện \(x>\frac{1}{2}\) nếu ko hàm ko tồn tại GTNN

Nếu \(x>\frac{1}{2}\)

\(y=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{5\left(2x-1\right)}{6\left(2x-1\right)}}+\frac{1}{6}=\frac{1}{6}+\frac{\sqrt{30}}{3}\)

Dấu "=" xảy ra khi \(\frac{2x-1}{6}=\frac{5}{2x-1}\Rightarrow x=\frac{1+\sqrt{30}}{2}\)

29 tháng 10 2017

Đặt t=\(\sqrt{x^2-3x+4}\)
ta có t \(\in\)(\(\sqrt{2}\) ;\(2\sqrt{2}\))

suy ra y = \(t^2-4t-4\) = \(\left(t-2\right)^2-8\) \(\ge-8\)

1 tháng 11 2017

Đặt \(t=\sqrt{x^2-3x+4}\).

Ta có hàm số có dạng: \(y=t^2-4t-4\)(*) trên \(\left[1;4\right]\)

Đỉnh \(I\left(2;-8\right)\)

Hàm số đạt GTNN khi \(t=2\Leftrightarrow\sqrt{x^2-3x+4}=2\Leftrightarrow x^2-3x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

Vậy hàm số (*) đạt GTNN trên \(\left[1;4\right]\) là -8 khi x=3

NV
12 tháng 2 2020

\(y=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}-\frac{3}{2}=\frac{2\sqrt{6}-3}{2}\)

Dấu "=" xảy ra khi \(\frac{3\left(x+1\right)}{2}=\frac{1}{x+1}\Leftrightarrow x=\frac{\sqrt{6}-3}{3}\)