\(\frac{2}{1+tan^2x}\)

b/ y =

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 9 2020

a/ \(0\le cos^2x\le1\Rightarrow2\le y\le\sqrt{7}\)

\(y_{min}=2\) khi \(cos^2x=1\)

\(y_{max}=\sqrt{7}\) khi \(cos^2x=0\)

b/ \(y=\frac{2}{1+tan^2x}=\frac{2}{\frac{1}{cos^2x}}=2cos^2x\le2\)

\(\Rightarrow y_{max}=2\) khi \(cos^2x=1\)

\(y_{min}\) ko tồn tại

c/ \(y=1-cos2x+\sqrt{3}sin2x=2\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)+1\)

\(y=2sin\left(2x-\frac{\pi}{6}\right)+1\)

Do \(-1\le sin\left(2x-\frac{\pi}{6}\right)\le1\Rightarrow-1\le y\le3\)

NV
3 tháng 10 2020

a.

\(\left\{{}\begin{matrix}sin^4x\le sin^2x\\cos^3x\le cos^2x\end{matrix}\right.\) \(\Rightarrow y\le sin^2x+cos^2x=1\)

\(y_{max}=1\) khi \(\left[{}\begin{matrix}x=k2\pi\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)

\(y=\left(1-cos^2x\right)^2+cos^3x=cos^4x+cos^3x-2cos^2x+1\)

\(y=\left(cosx+1\right)\left(cos^3x-2cosx+2\right)-1\ge-1\)

\(y_{min}=-1\) khi \(cosx=-1\)

b.

\(y=sin^4x.cos^2x\ge0\)

\(y_{min}=0\) khi \(sin2x=0\)

\(y=sin^4x\left(1-sin^2x\right)=\frac{1}{2}.sin^2x.sin^2x.\left(2-2sin^2x\right)\le\frac{1}{2}\left(\frac{sin^2x+sin^2x+2-2sin^2x}{3}\right)^3=\frac{4}{27}\)

\(y_{max}=\frac{4}{27}\) khi \(sin^2x=\frac{2}{3}\)

c.

\(y_{max}\) ko tồn tại

\(y=\frac{tanx}{2}+\frac{tanx}{2}+\frac{1}{tan^2x}\ge3\sqrt[3]{\frac{tan^2x}{4tan^2x}}=\frac{3}{\sqrt[3]{4}}\)

Dấu "=" xảy ra khi \(tanx=\sqrt[3]{2}\)

NV
16 tháng 9 2020

d.

\(-1\le sin2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)

\(y_{min}=2\) khi \(sin2x=-1\)

\(y_{max}=1+\sqrt{3}\) khi \(sin2x=1\)

e.

\(0\le sin^2x\le1\Rightarrow\frac{4}{3}\le y\le2\)

\(y_{min}=\frac{4}{3}\) khi \(sin^2x=1\)

\(y_{max}=2\) khi \(sinx=0\)

NV
16 tháng 9 2020

a.

\(0\le cos^2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)

\(y_{min}=2\) khi \(cosx=0\)

\(y_{max}=1+\sqrt{3}\) khi \(cos^2x=1\)

b.

\(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\Rightarrow-2\le y\le4\)

\(y_{min}=-2\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)

\(y_{max}=4\) khi \(sin\left(2x-\frac{\pi}{4}\right)=1\)

c.

\(0\le cos^23x\le1\Rightarrow1\le y\le3\)

\(y_{min}=1\) khi \(cos^23x=1\)

\(y_{max}=3\) khi \(cos3x=0\)

9 tháng 4 2017

a) Cách 1: y' = (9 -2x)'(2x3- 9x2 +1) +(9 -2x)(2x3- 9x2 +1)' = -2(2x3- 9x2 +1) +(9 -2x)(6x2 -18x) = -16x3 +108x2 -162x -2.

Cách 2: y = -4x4 +36x3 -81x2 -2x +9, do đó

y' = -16x3 +108x2 -162x -2.

b) y' = .(7x -3) +(7x -3)'= (7x -3) +7.

c) y' = (x -2)'√(x2 +1) + (x -2)(√x2 +1)' = √(x2 +1) + (x -2) = √(x2 +1) + (x -2) = √(x2 +1) + = .

d) y' = 2tanx.(tanx)' - (x2)' = .

e) y' = sin = sin.


15 tháng 9 2020

câu b lập bảng biến thiên đc ko

NV
15 tháng 9 2020

a.

\(0\le sin^2x\le1\Rightarrow\frac{4}{3}\le y\le4\)

\(y_{max}=4\) khi \(sinx=0\)

\(y_{min}=\frac{4}{3}\) khi \(sin^2x=1\)

b.

Đặt \(4sinx-3cosx=5\left(\frac{4}{5}sinx-\frac{3}{5}cosx\right)=5sin\left(x-a\right)=t\)

\(\Rightarrow-5\le t\le5\)

\(\Rightarrow y=t^2-4t+1=\left(t-2\right)^2-3\ge-3\)

\(y_{min}=-3\) khi \(t=2\)

\(y=t^2-4t-45+46=\left(t-9\right)\left(t+5\right)+46\le46\)

\(y_{max}=46\) khi \(t=-5\)

NV
23 tháng 7 2020

e/

\(y=5sinx+6cosx-7\)

\(=\sqrt{61}\left(\frac{5}{\sqrt{61}}sinx+\frac{6}{\sqrt{61}}cosx\right)-7\)

\(=\sqrt{61}\left(sinx.cosa+cosx.sina\right)-7\) (với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{5}{\sqrt{61}}\))

\(=\sqrt{61}.sin\left(x+a\right)-7\)

Do \(-1\le sin\left(x+a\right)\le1\Rightarrow7-\sqrt{61}\le y\le7+\sqrt{61}\)

\(y_{min}=7-\sqrt{61}\) khi \(sin\left(x+a\right)=-1\)

\(y_{max}=7+\sqrt{61}\) khi \(sin\left(x+a\right)=1\)

f/

\(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)+3\)

\(=2sin\left(x+\frac{\pi}{3}\right)+3\)

\(\Rightarrow1\le y\le5\)

\(y_{min}=1\) khi \(sin\left(x+\frac{\pi}{3}\right)=-1\)

\(y_{max}=5\) khi \(x+\frac{\pi}{3}=1\)

NV
23 tháng 7 2020

c/

\(y=2\left(1-cos2x\right)+sin2x+cos2x\)

\(=sin2x-cos2x+2=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)+2\)

Do \(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\)

\(\Rightarrow2-\sqrt{2}\le y\le2+\sqrt{2}\)

\(y_{min}=2-\sqrt{2}\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)

\(y_{max}=2+\sqrt{2}\) khi \(sin\left(2x+\frac{\pi}{4}\right)=1\)

d/

\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=1-3sin^2x.cos^2x\)

\(=1-\frac{3}{4}sin^22x\)

\(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le y\le1\)

\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)

\(y_{max}=1\) khi \(sin2x=0\)