\(A=x^2-10x-3\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

a) \(A=\left(x^2-10x+25\right)\)\(-28\)

   \(A=\left(x-5\right)^2-28\)\(>=\)-28

MinA = -28 <=> x-5=0 <=> x=5

b)\(B=-\left(x^2+2x+1\right)+6\)

   \(B=-\left(x+1\right)^2+6\)\(< =\)6

MaxB = 6 <=> x+1=0 <=> x=-1

c)\(C=-5\left(x^2-\frac{6}{5}x+\frac{9}{25}\right)-\frac{26}{5}\)

   \(C=-5\left(x-\frac{3}{5}\right)^2-\frac{26}{5}\)\(< =-\frac{26}{5}\)

MaxC = \(-\frac{26}{5}\)<=> \(x-\frac{3}{5}=0\)<=> x=\(\frac{3}{5}\)

d)\(D=-3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)+\frac{61}{12}\)

\(D=-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\)\(< =\frac{61}{12}\)

MacD = \(\frac{61}{12}\)<=> \(x+\frac{1}{6}=0\)<=> \(x=\frac{-1}{6}\)

Đúng thì nhớ tích cho minh nha

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

30 tháng 7 2017

a)\(2x^2-4x+7=2x^2-4x+2+5=2\left(x^2-2x+1\right)+5=2\left(x-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x=1

b)\(9x^2-6x+5=\left(3x\right)^2-2.3x.1+1+4=\left(3x-1\right)^2+4\ge5\)

Dấu "=" xảy ra khi x=1/3

c)\(3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left(x^2-2.\frac{5}{6}.x+\frac{25}{36}-\frac{1}{36}\right)\)

\(=3\left[\left(x-\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Dấu "=" xảy ra khi x=5/6

mấy câu sau tương tự

30 tháng 7 2017

a) 2x2-4x+7=(2x2-2.2x.1+1)+6=(2x-1)2+6

Vì (2x-1)2 >_(lớn hơn hoặc bằng) 0

=>(2x-1)2+6>_6

=> GTNN của 2x2-4x+7=6

b, 9x2-6x+5=[(3x)2-2.3x.1+1]+4=(3x-1)2+4

Vì (3x-1)2>_0

=>(3x-1)2+4>_4

=> GTNN của 9x2-6x+5=4

6 tháng 10 2018

a) \(A=25x^2-10x+9\)

\(A=\left(5x\right)^2-2\cdot5x\cdot1+1^2+9\)

\(A=\left(5x-1\right)^2+9\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)

5 tháng 7 2016

a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)

b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)

c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)

d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)

 

6 tháng 7 2016

tik nhé Toán lớp 8

26 tháng 7 2016

a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) với mọi x

=> (x-1)^2 +4 \(\ge\) vợi mọi x

Pmin=4 <=> x-1=0 <=>x=1

 

 

26 tháng 7 2016

1.

b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)

\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)

Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)

27 tháng 7 2018

a) \(A=x^2-2x-6\)

\(A=\left(x^2-2x+1\right)-7\)

\(A=\left(x-1\right)^2-7\)

\(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1

a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)

Dấu '=' xảy ra khi x=1

b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)

Dấu '=' xảy ra khi x=1/2

c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)

Dấu '=' xảy ra khi x=1/3

d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)

Dấu '=' xảy ra khi x=-6

e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)

Dấu '=' xảy ra khi x=3/2

14 tháng 8 2018

a) \(\left(x-2\right)^3-\left(x+4\right)^2\)

\(=x^3-6x^2+12x-8-\left(x^2+8x+16\right)\)

\(=x^3-6x^2+12x-8-x^2-8x-16\)

\(=x^3-7x^2+4x-24\)

b) \(\left(x-3\right)^3+\left(x+3\right)^3\)

\(=x^3-9x^2+27x-27+x^3+9x^2+27x+27\)

\(=2x^3+54x\)

\(=2x\left(x^2+27\right)\)

c) \(\left(x-2\right)^2-\left(x+2\right)^2=\left(x^2-4x+4\right)-\left(x^2+4x+4\right)\)

\(=x^2-4x+4-x^2-4x-4=-8x\)

d) \(\frac{x^2-25}{x+5}=\frac{\left(x-5\right)\left(x+5\right)}{x+5}=x-5\)

e) \(\frac{x^3-6x^2+12x-8}{x-2}=\frac{\left(x-2\right)^3}{x-2}=\left(x-2\right)^2\)

g) \(\frac{x^3-125}{x-5}=\frac{x^3-5^3}{x-5}=\frac{\left(x-5\right)\left(x^2+5x+25\right)}{x-5}=x^2+5x+25\)

29 tháng 9 2019

\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)

\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)

Đẳng thức xảy ra khi x =0

Tí làm tiếp

29 tháng 9 2019

c)Đề sai:v

d) ĐK: \(x\ne1\). Bài này chỉ có min thôi nha!

\(D=\frac{3x^2-8x+6-2x^2+4x-2}{x^2-2x+1}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\ge2\)

Đẳng thức xảy ra khi x = 2