Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2C=4x^2+2x-10=((2x)^2+4x\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\))-\(\dfrac{41}{4}\)
=\(\left(2x+\dfrac{1}{2}\right)^2\)-41/4\(\ge\dfrac{-41}{4}\)
=> C\(\ge\dfrac{-41}{8}\)
Vậy min C = \(\dfrac{-41}{8}\)khi x=\(\dfrac{-1}{4}\)
\(4A=4x^2+44y^2+24xy-8y+20=\left(2x\right)^2+2.2x.6y+\left(6y\right)^2+8y^2-8y+20=\left(2x+6y\right)^2+2\left(4y^2-4y+1\right)+18=\left(2x+6y\right)^2+2\left(2y-1\right)^2+18\ge18\)
\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)
\(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)
\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)
\(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)
\(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).
cho mik sửa lại câu
b) \(2y-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)
b) \(2y-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)
\(=\dfrac{2y\left(3x+2y\right)}{3x+2y}-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)
\(=\dfrac{2y\left(3x+2y\right)-\left(6xy+2y\right)+\left(2y-9x^2\right)}{3x+2y}\)
\(=\dfrac{6xy+4y^2-6xy-2y+2y-9x^2}{3x+2y}\)
\(=\dfrac{4y^2-9x^2}{3x+2y}\)
\(=\dfrac{-\left(9x^2-4y^2\right)}{3x+2y}\)
\(=\dfrac{-\left[\left(3x\right)^2-\left(2y\right)^2\right]}{3x+2y}\)
\(=\dfrac{-\left(3x-2y\right)\left(3x+2y\right)}{3x+2y}\)
\(=-\left(3x-2y\right)\)
\(=-3x+2y\)
\(R=9x^2-6xy+y^2+y^2+5=\left(3x-y\right)^2+y^2+5\)
Ta thấy \(\left(3x-y\right)^2\ge0\)
\(y^2\ge0\)
suy ra \(R\ge0+0+5=5\)
dấu bằng xảy ra khi y=0 và 3x-y=0 hay x=0 và y=0
\(9x^2-6xy+2y^2+5=\left(3x\right)^2-6xy+y^2+y^2+5=\left(3x-y\right)^2+y^2+5\)
mả \(\left(3xy-y\right)^2+y^2\ge0\)
nen \(\left(3x+y\right)^2+y^2+5\ge5\)
dau bang say ra khi \(\left(3x+y\right)^2+y^2=0\)
vậy gái trị nhỏ nhất của biểu thức là 5