K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 5 2019

\(P=4x^2+4x+1-2\left|2x+1\right|+2019\)

\(P=\left|2x+1\right|^2-2\left|2x+1\right|+1+2018\)

\(P=\left(\left|2x+1\right|-1\right)^2+2018\ge2018\)

\(\Rightarrow P_{min}=2018\) khi \(\left|2x+1\right|-1=0\Rightarrow\left[{}\begin{matrix}2x+1=1\\2x+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

30 tháng 3 2021

\(B=\frac{\left(x-2\right)^2+2016}{\left(x-1\right)^2}=\frac{\left(t-1\right)^2+2016}{t^2}=\frac{t^2-2t+2017}{t^2}\)

\(=1-\frac{2}{t}+\frac{2017}{t^2}=1-2a+2017a^2=2017\left(a^2-2.\frac{1}{4034}+\frac{1}{4034}^2\right)-\frac{2017}{4034^2}+1\)

\(=2017\left(a-\frac{1}{4034}\right)^2+1-\frac{1}{2017^3}\ge1-\frac{1}{2017^3}\)

tự xét dấu = 

\(B=\frac{\left(x-2\right)^2+2016}{\left(x-1\right)^2}\)

\(\Leftrightarrow\frac{\left(t-1\right)^2+2016}{1^2}\)

\(\Leftrightarrow\frac{t^2-2t+2017}{t^2}\)

\(\Leftrightarrow1-\frac{2}{t}+\frac{2017}{t^2}\)

\(\Leftrightarrow1-2a+2017a^2\)

\(\Leftrightarrow a^2-2\times[\frac{1}{4034}+\frac{1^2}{4034}]-\frac{2017}{4034^2}+1\)

\(\Leftrightarrow2017\left(a-\frac{1}{4034}\right)^2+1-\frac{1}{2017}^3\)

phần cuối tự làm nha

22 tháng 10 2019

toi ko bt

16 tháng 12 2021

có ai làm NY tui hem

28 tháng 10 2016

Ta có

A=2x2+4y2-4x+4xy+2020

=(x^2+4y^2+4xy)+(x^2-4x+4)+2016

=(x+2y)^2+(x-2)^2+2016

Thấy

(x+2y)^2>=0 với mọi x,y

(x-2)^2>=0 với mọi x

=>(x+2y)^2+(x-2)^2+2016>=2016 với mọi x,y

Hay Min A>=2016

Dấu "=" xảy ra<=>(x+2y)^2=0 và(x-2)^2=0

<=>x=2;y=-1

Vậy Min A=2016 tại x=2 và y=-1

16 tháng 10 2016

Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0

​Bài 2: Tìm GTNN :​

A= x^2 -2x -4

B= x^2 -x +5

C= 4x^2 +2x -9

D= 2x^2 -4x +7

Giúp tớ với, tớ đang cần gấp

7 tháng 7 2018

BÀI 1: 

\(a,x^2-2x-1\)

\(=x^2-2x+1-2\)

\(=\left(x-1\right)^2-2\)

Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2-2\ge-2\forall x\)

Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy: GTNN của bt là -2 tại x=1

\(b,4x^2+4x-5\)

\(=4x^2+4x+1-6\)

\(=\left(2x+1\right)^2-6\)

Vì: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2-6\ge-6\forall x\)

Dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

VậyGTNN của bt là -6 tại x=-1/2

BÀI 2:

\(a,2x-x^2-4\)

\(=-x^2+2x-4\)

\(=-x^2+2x-1-3\)

\(=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

Vì: \(-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

Dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy GTLN của bt là -3 tại x=1

b,mk chưa nghĩ ra,lúc nào mk nghĩ ra sẽ gửi lời giải cho bn

7 tháng 7 2018

1)

a) Đặt \(A=x^2-2x+1\) 

\(\Rightarrow A=x^2-2x-1=\left(x^2-2.x.1+1^2\right)-2=\left(x-1\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2-2\ge2\forall x\)

\(A=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy \(A_{min}=2\Leftrightarrow x=1\)

Câu b tương tự

2)

a) Đặt \(B=2x-x^2-4\)

 \(B=2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

\(B=-3\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy\(B_{max}=-3\Leftrightarrow x=1\)

b) Đặt \(C=-x^2-4\)

Ta có: \(x^2\ge0\forall x\Rightarrow-x^2\ge0\forall x\Rightarrow-x^2-4\le-4\forall x\)

\(C=-4\Leftrightarrow-x^2=0\Leftrightarrow x=0\)

Vậy \(C_{max}=-4\Leftrightarrow x=0\)