K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

Tim GTNN of 4x2-3x +1/4x +2011 

It's very difficult *_*

5 tháng 7 2018

Bài 1:

Ta có: \(M=4x^2-3x+\dfrac{1}{4x}+2011=4x^2-4x+1+x+\dfrac{1}{4x}+2010\)

\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2010\)

\(=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)

Áp dụng BĐT Cô- si cho 2 số không âm, ta có:

\(x+\dfrac{1}{4x}\ge2\sqrt{x.\dfrac{1}{4x}}=2\sqrt{\dfrac{1}{4}}=1\)

Suy ra: \(M=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\ge0+1+2010=2011\)

Vậy: \(Min_M=2011\Leftrightarrow x=\dfrac{1}{2}\)

Bài 2: Tham khảo: với hai số thực không âm a, b thỏa a2 + b2 = 4, tìm giá trị lớn nhất của biểu thức M= ab /(a+b+2) | Câu hỏi ôn tập thi vào lớp 10

NV
30 tháng 4 2019

\(M=4x^2-4x+1+x+\frac{1}{4x}+2018\)

\(M\ge\left(2x-1\right)^2+2\sqrt{\frac{x}{4x}}+2018=\left(2x-1\right)^2+2019\ge2019\)

\(\Rightarrow M_{min}=2019\) khi \(x=\frac{1}{2}\)

30 tháng 4 2019

Bước thứ.hai là sao vậy bạn?? Bn có thể lý giải rõ cho mk hơn đc ko???

5 tháng 7 2020

vừa với giải xong giờ lại giải lại :v

\(M=4x^2-3x+\frac{1}{4x}+2011\)

\(=\left(2x-1\right)^2+x+\frac{1}{4x}+2010\)

Theo bđt Cauchy : \(x+\frac{1}{4x}\ge2\sqrt[2]{\frac{1}{4}}=1\)

Suy ra : \(M\ge1+2010=2011\)

Vậy \(Min_M=2011\)khi \(x=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Lời giải:

a)

Ta có: \(A=4x^2-x-2=(2x)^2-2.2x.\frac{1}{4}x+(\frac{1}{4})^2-\frac{33}{16}\)

\(=(2x-\frac{1}{4})^2-\frac{33}{16}\)

\((2x-\frac{1}{4})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A\ge 0-\frac{33}{16}=-\frac{33}{16}\)

Vậy GTNN của $A$ là $\frac{-33}{16}$ khi $x=\frac{1}{8}$

b)

\(B=\frac{2x^2+6x-3}{5}=\frac{2(x^2+3x+\frac{9}{4})-\frac{15}{2}}{5}\)

\(=\frac{2(x+\frac{3}{2})^2-\frac{15}{2}}{5}\geq \frac{2.0-\frac{15}{2}}{5}=\frac{-3}{2}\)

Vậy \(B_{\min}=\frac{-3}{2}\Leftrightarrow (x+\frac{3}{2})^2=0\Leftrightarrow x=\frac{-3}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

c)

\(C=x^4+4x-1\)

\(=x^4-2x^2+1+2x^2+4x-2\)

\(=(x^2-1)^2+2(x^2+2x+1)-4\)

\(=(x^2-1)^2+2(x+1)^2-4\)

\(=(x-1)^2(x+1)^2+2(x+1)^2-4=(x+1)^2[(x-1)^2+2]-4\)

Thấy rằng:

\((x+1)^2\geq 0; (x-1)^2+2>0\Rightarrow (x+1)^2[(x-1)^2+2]\geq 0\)

\(\Rightarrow C\geq 0-4=-4\)

Vậy $C_{\min}=-4$ khi \((x+1)^2=0\Leftrightarrow x=-1\)

d)

\(D=4x^2+\frac{9}{x^2}=(2x)^2+(\frac{3}{x})^2-2.2x.\frac{3}{x}+12\)

\(=(2x-\frac{3}{x})^2+12\geq 0+12=12\)

Vậy $D_{\min}=12$ khi \(2x-\frac{3}{x}=0\Leftrightarrow x=\pm \sqrt{\frac{3}{2}}\)

29 tháng 7 2015

\(M=3x^2+4x+1=3.\left(x^2+\frac{4}{3}x+\frac{1}{3}\right)\)

\(=3.\left(x^2+2.x.\frac{2}{3}+\frac{4}{9}-\frac{1}{9}\right)=3.\left(x^2+2.x.\frac{2}{3}+\frac{4}{9}\right)-\frac{1}{3}\)

\(=3.\left(x+\frac{2}{3}\right)^2-\frac{1}{3}\)

\(\text{Vì }3.\left(x+\frac{2}{3}\right)^2\ge0\text{ nên }3.\left(x+\frac{2}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)

\(\text{Dấu "=" xảy ra khi : }x+\frac{2}{3}=0\)

                                                  \(\Leftrightarrow x=\frac{-2}{3}\)

\(\text{Vậy GTNN của M là }\frac{-1}{3}\text{ tại }x=\frac{-2}{3}\)

22 tháng 10 2016

Nghiệm lẻ lắm bấm máy tính đi b