Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(y'=\dfrac{\left(1+\sqrt{3x-1}\right)'}{1+\sqrt{3x-1}}=\dfrac{3}{2\left(1+\sqrt{3x-1}\right)\sqrt{3x-1}}\)
b.
\(y'=\dfrac{\left(2sin^2x-1\right)'}{\left(2sin^2x-1\right).ln10}=\dfrac{2sin2x}{\left(2sin^2x-1\right)ln10}\)
c.
\(y'=\left(3x^2+3\right)3^{x^3+3x+1}.e^x.ln3+3^{x^3+3x+1}.e^x\)
Lời giải:
Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:
\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)
Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:
\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)
Giả sử \(a=\log_yx=3\) và \(b=\log_xy=\frac{1}{3}\)
\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Rightarrow2^{x+\frac{1}{x}}\ge2^2=4\Rightarrow VT\ge4\)
Xét biểu thức dưới hàm logarit vế phải:
\(14-\left(y-2\right)\sqrt{y+1}=14-\left(y+1\right)\sqrt{y+1}+3\sqrt{y+1}\)
Đặt \(t=\sqrt{y+1}\ge0\) thì \(f\left(t\right)=14-t^3+3t\)
\(f'\left(t\right)=-3t^2+3=0\Rightarrow t=1\)
Dễ dạng nhận ra đây là điểm cực đại của hàm \(f\left(t\right)\)
\(\Rightarrow f\left(t\right)_{max}=f\left(1\right)=16\)
\(\Rightarrow VP\le log_216=4\le VT\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x=\frac{1}{x}\\t=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\\sqrt{y+1}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
\(\Rightarrow P=1+0+0+1=2\)
- Nếu đề là \(2^{x+\frac{1}{2}}\) thì \(VT>\sqrt{2}\) hoàn toàn ko thể đánh giá được P, vì miền giá trị của VT và VP trùng nhau 1 đoạn (x;y) rất dài cho nên sẽ có vô số giá trị P xảy ra nên mình khẳng định luôn là đề sai
Đề bài là \(2^{x+\frac{1}{2}}\) hả bạn? Với đề này thì ko giải được
ĐKXĐ: \(x>0\)
\(log_{a^4}x-log_{a^2}x+log_ax=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}log_ax-\frac{1}{2}log_ax+log_ax=\frac{3}{4}\)
\(\Leftrightarrow\frac{3}{4}log_ax=\frac{3}{4}\)
\(\Leftrightarrow log_ax=1\)
\(\Rightarrow x=a\)
Đáp án B