\(M=x^2+8x+y^2+2y-10\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

\(M=x^2+8x+y^2+2y-10\)

\(=x^2+2.x.4+16+y^2+2.y.1+1-27\)

\(=\left(x+4\right)^2+\left(y+1\right)^2-27\ge-27\)

=> GTNN của M là -27

<=> x+4=0 và y+1=0

<=> x=-4 và y=-1.

25 tháng 2 2020

G = (x - 3)^2 + |x^2 - 9| + 25

có (x - 3)^2 > 0 và |x^2 - 9| >

=> G > 25

xét G = 25 khi : 

(x - 3)^2 = 0 và |x^2 - 9| = 0

=> x - 3 = 0 và x^2 - 9 = 0

=> x = 3 và x^2 = 9

=> x = 3 và x = +

=> x = 3

vậy Min G = 25 khi x = 3

25 tháng 2 2020

\(G=\left(x-3\right)^2+|x^2-9|+25\)

Ta có:\(\left(x-3\right)^2\ge0;|x^2-9|\ge0\)

\(\Rightarrow G\ge25\)

Nếu G=25 thì \(\hept{\begin{cases}\left(x-3\right)^2=0\\|x^2-9|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\x^2-9=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\x=\pm3\end{cases}}\Rightarrow x=3}\)

Vậy GTNN của G=25 đạt được khi x=3

15 tháng 8 2017

a) ta có : \(\left(x+1\right)^{2018}\ge0\) với mọi x \(\Rightarrow A=4-\left(x+1\right)^{2018}\le4\) với mọi x

\(\Rightarrow GTLN\) của A là 4 khi \(\left(x+1\right)^{2018}=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

vậy \(GTLN\) của A là 4 khi \(x=-1\)

b) ta có : \(\left(x-3\right)^2\ge0\) với mọi x \(\Rightarrow B=\left(x-3\right)^2-2017\ge-2017\) với mọi x

\(\Rightarrow GTNN\) của B là \(-2017\) khi \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

vậy \(GTNN\) của B là \(-2017\) khi \(x=3\)

c) ta có : \(\left(x+1\right)^2\ge0\) với mọi x \(\Rightarrow\left(x+1\right)^2+2\ge2\) với mọi x

ta có : \(C=\dfrac{4}{\left(x+1\right)^2+2}\) lớn nhất \(\Leftrightarrow\left(x+1\right)^2+2\) là số dương bé nhất

ta có : \(\left(x+1\right)^2+2\ge2\) với mọi x \(\Rightarrow\) GTNN của \(\left(x+1\right)^2+2\) là 2 khi \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

khi đó \(C=\dfrac{4}{\left(-1+1\right)^2+2}=\dfrac{4}{2}=2\)

vậy GTLN của C là 2 khi \(x=-1\)

d) ta có : \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}\ge0\forall x;y\\\left|y+1\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow D=\left(2x-y+1\right)^{2018}+\left|y+1\right|+2017\ge2017\) với mọi x ; y

\(\Rightarrow GTNN\) của D là 2017 khi \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}=0\\\left|y+1\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x-\left(-1\right)+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x+1+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

vậy GTNN của D là 2017 khi \(x=y=-1\)

5 tháng 2 2017

Nói cho mik bt GTLN và GTNN là gì đã rùi mik giải cho

22 tháng 5 2017

Bài 1:

\(A=\left|x-2\right|+\left|x+y-5\right|+3\)

Ta thấy: \(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x+y-5\right|\ge0\end{matrix}\right.\)\(\forall x,y\)

\(\Rightarrow\left|x-2\right|+\left|x+y-5\right|\ge0\forall x,y\)

\(\Rightarrow\left|x-2\right|+\left|x+y-5\right|+3\ge3\forall x,y\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x+y-5\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\x+y-5=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Bài 2:

\(B=\dfrac{10}{\left|x+3\right|+\left|y+7\right|+2}\)

Ta thấy: \(\left\{{}\begin{matrix}\left|x+3\right|\ge0\\\left|y+7\right|\ge0\end{matrix}\right.\)\(\forall x,y\)

\(\Rightarrow\left|x+3\right|+\left|y+7\right|\ge0\forall x,y\)

\(\Rightarrow\left|x+3\right|+\left|y+7\right|+2\ge2\forall x,y\)

\(\Rightarrow\dfrac{1}{\left|x+3\right|+\left|y+7\right|+2}\le\dfrac{1}{2}\forall x,y\)

\(\Rightarrow B=\dfrac{10}{\left|x+3\right|+\left|y+7\right|+2}\le\dfrac{10}{2}=5\forall x,y\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left|x+3\right|=0\\\left|y+7\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x+3=0\\y+7=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-7\end{matrix}\right.\)

22 tháng 5 2017

1/ Vì: \(\left|x-2\right|\ge0\forall x\Rightarrow Min_{\left|x-2\right|}=0\Leftrightarrow x=2\)(1)

Lại có: \(\left|x+y-5\right|\ge0\forall x,y\)

hay \(\left|2+y-5\right|\ge0\forall x,y\)

\(\Rightarrow Min_{\left|2+y-5\right|}=0\Leftrightarrow y=3\) (2)

Từ (1), (2)

\(\Rightarrow MIN_A=3\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

2/ Để \(\dfrac{10}{2+\left|x+3\right|+\left|y+7\right|}\) lớn nhất

\(\Rightarrow2+\left|x+3\right|+\left|y+7\right|\) nhỏ nhất

Ta có: \(\left\{{}\begin{matrix}\left|x+3\right|\ge0\forall x\\\left|y+7\right|\ge0\forall y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}Min_{\left|x+3\right|}=0\Leftrightarrow x=-3\\Min_{\left|y+7\right|}=0\Leftrightarrow y=-7\end{matrix}\right.\)

\(\Rightarrow Min_{2+\left|x+3\right|+\left|y+7\right|}=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-7\end{matrix}\right.\)

\(\Rightarrow MAX_{\dfrac{10}{2+\left|x+3\right|+\left|y+7\right|}}=\dfrac{10}{2}=5\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-7\end{matrix}\right.\)

2 tháng 8 2017

a, A = 3,5 + |x - 2017| - 9
= -5,5 + |x - 2017|
Ta có : |x - 2017| \(\ge0\Rightarrow-5,5+\left|x-2017\right|\ge-5,5\)
Dấu ''='' xảy ra <=> x - 2017 = 0 <=> x = 2017
Vậy GTNN của A = -5,5 <=> x = 2017
@Cô Bé Dễ Thương

2 tháng 1 2016

P nhỏ nhất khi x2+3x+10 lớn nhất

Ta có: \(x^2+3x+10=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{31}{4}=\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\)không có GTLN

=> P không có GTNN

P lớn nhất khi x2+3x+10 nhỏ nhất

<=> \(\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\text{ nhỏ nhất}\left(=\frac{31}{4}\right)\)

<=> x + 3/2 = 0

<=> x = -3/2

=> GTLN của P là -20/31 <=> x=-3/2

2 tháng 1 2016

<^>O>...

.?/.........)/???????/......,Ư

><......./

18 tháng 7 2018

Giúp tớ nha các CTV

18 tháng 7 2018

b. B=2017-|3x-6|

Vì |3x-6| lớn hơn hoặc bằng 0  với mọi x € Z => B=2017-|3x-6| bé hơn hoặc bằng 2017 với mọi x € Z .

Dâu " =" xảy ra <=> |3x-6|=0<=>3x-6=0<=>3x=6<=>x=2

Vậy B max là : 2017 <=> x=2