Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x-1}{2015}+\frac{x-2}{2014}=\frac{x-3}{2013}+\frac{x-4}{2012}\)
\(\Rightarrow\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)=\left(\frac{x-3}{2013}-1\right)+\left(\frac{x-4}{2012}-1\right)\)
\(\Rightarrow\frac{x-2016}{2015}+\frac{x-2016}{2014}=\frac{x-2016}{2013}+\frac{x-2016}{2012}\)
\(\Rightarrow\frac{x-2016}{2015}+\frac{x-2016}{2014}-\frac{x-2016}{2013}-\frac{x-2016}{2012}=0\)
\(\Rightarrow\left(x-2016\right).\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
Vì \(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\ne0\Rightarrow x-2016=0\)
\(\Rightarrow x=2016\)
b) \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)
\(\Rightarrow\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}-\frac{x-4}{2001}=0\)
\(\Rightarrow\left(\frac{x-1}{2004}-1\right)+\left(\frac{x-2}{2003}-1\right)-\left(\frac{x-3}{2002}-1\right)-\left(\frac{x-4}{2001}-1\right)=0\)
\(\Rightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)
\(\Rightarrow\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
vì \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\Rightarrow x-2005=0\)
\(\Rightarrow x=2005\)
c) \(|5x-3|\ge7\)
\(\Rightarrow5x-3\ge7\) hoặc - (5x-3) \(\ge7\)
\(\Rightarrow5x-3\ge7\) hoặc \(-5x+3\ge7\)
\(\Rightarrow5x\ge10\) hoặc \(-5x\ge4\)
\(\Rightarrow x\ge2\) hoặc \(x\le\frac{4}{-5}\)
k nhé!!! Kp luôn nha!
\(-x-\frac{9}{2004}=-\frac{1}{2003}\)
\(\Rightarrow-x=\frac{-1}{2003}+\frac{9}{2004}\)
\(\Rightarrow-x=\frac{-1}{2003}+\frac{9}{2004}\)
\(\frac{5}{9}-x=1-2004\)
\(\Rightarrow\frac{5}{9}-x=-2003\)
\(\Rightarrow x=\frac{5}{9}-\left(-2003\right)\)
\(\Rightarrow x=\frac{18032}{9}\)
Lời giải:
\(A=2004+\sqrt{2003-x}\)
a)Để \(A\) có nghĩa thì \(2003-x\ge0\Leftrightarrow x\le2003\)
b) Ta có:
\(A=2004+\sqrt{2003-x}=2005\)
Tương đương với:
\(\sqrt{2003-x}=1\)
Suy ra :\(\left|2003-x\right|=1\Rightarrow\left[{}\begin{matrix}2003-x=1\\2003-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2002\\x=2004\end{matrix}\right.\)
c) Ta có:
Để \(A\) nhỏ nhất thì \(\sqrt{2003-x}\) cũng phải nhỏ nhất
\(\sqrt{2003-x}\ge0\Leftrightarrow2004+\sqrt{2003-x}\ge2004\)
Dấu "=" xảy ra khi: \(x=2003\)
x + (x+1) +(x+2) +...+(x+2003)=2004
=> (x+0) + (x+1) +(x+2) +...+(x+2003)=2004
<=> có 2004 cặp
=> (x+x+x+...+x) + (0+1+2+...+2003) = 2004
=> 2004x + 2017026 = 2004
2004x = 2004 - 2017026
2004x = -2015022
x = -2015022 : 2004
x = -1005,5
x+(x+1)+(x+2)+...+(x+2003)=2004
<=>(x+0)+(x+1)+(x+2)+...+(x+2003)=2004
=>Có 2004 cặp số
<=>(x+x+x+...+x)+(0+1+2+...2003)=2004
<=>2004x+2017026=2004
2004x=2004-2017026
2004x=-2015022
x=-2015022:2004
x=-1005,5
Vậy x =-1005,5
x+(x+1)+(x+2)+...+(x+2003)=2004
2004x+1+2+3+...+2003=2004
2004x+ \(\frac{2003.\left(1+2003\right)}{2}\) = 2004
2004x= 2004-2007006
2004x= -2005002
x= -20052002:2004= -1000,5
Vậy x=-1000,5
x + (x + 1) + (x + 2) + ... + (x + 2003) = 2004
=> 2004x + 1 + 2 + 3 + ... + 2003 = 2004
=> 2004x + \(\frac{\left(1+2003\right)\cdot2003}{2}\) = 2004
=> 2004x + 2007006 = 2004
=> 2004x = -2005002
=> x = -2005002 : 2004 = \(-1000\frac{1}{2}\)
Bài giải
Ta có :
\(A=\left|2004-x\right|+\left|2003-x\right|=\left|2004-x\right|+\left|x-2003\right|\ge\left|2004-x+x-2003\right|=\left|1\right|=1\)
Dấu " = " xảy ra khi :
\(\left(2004-x\right)\left(x-2003\right)\ge0\)
TH1 : \(\hept{\begin{cases}2004-x\ge0\\x-2003\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\le2004\\x\ge2003\end{cases}}\) \(\Rightarrow\text{ }2003\le x\le2004\)
TH2 : \(\hept{\begin{cases}2004-x< 0\\x-2003< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>2004\\x< 2003\end{cases}}\)( Loại )
\(\Rightarrow\text{ Min A }=1\text{ khi }2003\le x\le2004\)