Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(3x^2y+5x^2+3y^2+5y=16\)
\(\Leftrightarrow3y\left(x^2+y\right)+5\left(x^2+y\right)=16\)
\(\Leftrightarrow\left(x^2+y\right)\left(3y+5\right)=16\)
a) \(x^2-3x-5=x\left(x-3\right)-5\)
Để \(^2-3x-5\)chia hết cho x-3 thì x(x-3) -5 phải chia hết cho x-3
mà x(x-3) chia hết cho x-3 => -5 phải chia hết cho x-3
=> x-3\(\inƯ\left(-5\right)=\left\{-1;-5;1;5\right\}\)
Lập bảng giải tiếp
\(5x+2=5\left(x+1\right)-3\)
Để 5x+2 chia hết cho x+1 thì 5(x+1)-3 phải chia hết cho x+1
mà 5(x+1) chia hết cho x+1
=> -3 phải chia hết cho x+1
=> x+1\(\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)
Lập bảng giải tiếp nhé! :3
5x.5x+1.5x+2<100.................00:224
Có 24 số 0
53x.51.52<1024:2224
53x.53<524
53x<524:53
53x<521
=>3x=21
x=21:3
x=7\(\in\)N
Vậy x=7
Chúc bn học tốt
Bài 2: Vì x \(\in\) N nên ta có bảng giá trị sau :
x-2 | 1 | 12 | 4 | 3 | 2 | 6 |
x | 3 | 14 | 6 | 5 | 4 | 8 |
2y+1 | 12 | 1 | 3 | 4 | 6 | 2 |
y | loại | 0 | 1 | loại | loại | loại |
Vậy (x ; y) \(\in\) {(14 ; 0) ; (6 ; 1)}
Bài giải:
1/ 7^(2x-1) -7^6. 3=7^6.4
7^(2x-1) =7^6.4 +7^6. 3
7^(2x-1) =7^6.(4+3)
7^(2x-1) =7^6.7
7^(2x-1) =7^7
2x-1=7
2x=7+1
2x=8
x=4
2/ (x-2).(2y+1)=12 vì x,y E N => x-2 và 2y+1 cũng E N ; 2y +1 là 1 số lẻ
* 12 =12.1=4.3 ( để có 1 số lẻ vì 2y +1 là 1 số lẻ )
th1: x-2=12 và 2y+1=1
x-2=12 =>x=14
2y+1=1 =>2y=0 =>y=0
th2 x-2=4 và 2y+1 =3
x-2 =4=>x=6
2y+1=3 =>2y=2 =>y=1
a) Ta có A = -|x| + 2
= 2 - |x|
Lại có \(\left|x\right|\ge0\forall x\Rightarrow2-\left|x\right|\le2\forall x\)
Dấu "=" xảy ra khi x = 0
Vậy Max A = 2 <=> x = 0
b) Ta có B = -x2 + 5 = 5 - x2
Lại có \(x^2\ge0\forall x\Rightarrow5-x^2\le5\forall x\)
Dấu "=" xảy ra khi x2 = 0
=> x = 0
Vậy Max B = 5 <=> x = 0
c) Ta có : C = -|x + 1| + 12 = 12 - |x + 1|
Lại có \(\left|x+1\right|\ge0\forall x\Rightarrow12-\left|x+1\right|\le12\forall x\)
Dấu "=" xảy ra <=> x + 1 = 0
=> x = - 1
Vậy Max C = 12 <=> x = - 1
d) Ta có D = -2|x + 4| + 5 = 5 - 2|x + 4|
Lại có \(2\left|x+4\right|\ge0\forall x\Rightarrow5-2\left|x+4\right|\le5\forall x\)
Dấu "=" xảy ra <=> x + 4 = 0
=> x = - 4
Vậy Max D = 5 <=> x = -4