\(y=x^2-\sqrt{5-x^2}\)

2. ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 2 2020

a/ \(0\le\sqrt{5-x^2}\le\sqrt{5}\)

Đặt \(t=\sqrt{5-x^2}\Rightarrow0\le t\le\sqrt{5}\)

\(y=-t^2-t+5\)

Ta có \(-\frac{b}{2a}=-\frac{1}{2}\notin\left[0;\sqrt{5}\right]\)

\(y\left(0\right)=5\) ; \(y\left(\sqrt{5}\right)=-\sqrt{5}\)

\(\Rightarrow y_{max}=5\) khi \(x=\pm\sqrt{5}\)

\(y_{min}=-\sqrt{5}\) khi \(x=0\)

NV
9 tháng 2 2020

Câu 2:

Nếu không thêm điều kiện gì thì cả min lẫn max đều ko tồn tại

Câu 3: Đề ko rõ

Câu 4: \(x>1\)

\(y=\frac{x-1}{20}+\frac{1}{2\sqrt{x-1}}+\frac{1}{2\sqrt{x-1}}+\frac{1}{20}\)

\(y\ge3\sqrt[3]{\frac{x-1}{80\left(x-1\right)}}+\frac{1}{20}=\frac{3}{2\sqrt[3]{10}}+\frac{1}{20}\)

Dấu "=" xảy ra khi \(\frac{x-1}{10}=\frac{1}{\sqrt{x-1}}\Rightarrow x=\sqrt[3]{100}+1\)

11 tháng 11 2016

Từ bđt Cauchy : \(a+b\ge2\sqrt{ab}\) ta suy ra được \(ab\le\frac{\left(a+b\right)^2}{4}\)

Áp dụng vào bài toán của bạn :

a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{\left(x+3+5-x\right)^2}{4}=...............\)

b/ Tương tự

c/ \(y=\left(x+3\right)\left(5-2x\right)=\frac{1}{2}.\left(2x+6\right)\left(5-2x\right)\le\frac{1}{2}.\frac{\left(2x+6+5-2x\right)^2}{4}=.............\)

d/ Tương tự

e/ \(y=\left(6x+3\right)\left(5-2x\right)=3\left(2x+1\right)\left(5-2x\right)\le3.\frac{\left(2x+1+5-2x\right)^2}{4}=.......\)

f/ Xét \(\frac{1}{y}=\frac{x^2+2}{x}=x+\frac{2}{x}\ge2\sqrt{x.\frac{2}{x}}=2\sqrt{2}\)

Suy ra \(y\le\frac{1}{2\sqrt{2}}\)

..........................

g/ Đặt \(t=x^2\) , \(t>0\) (Vì nếu t = 0 thì y = 0)

\(\frac{1}{y}=\frac{t^3+6t^2+12t+8}{t}=t^2+6t+\frac{8}{t}+12\)

\(=t^2+6t+\frac{8}{3t}+\frac{8}{3t}+\frac{8}{3t}+12\)

\(\ge5.\sqrt[5]{t^2.6t.\left(\frac{8}{3t}\right)^3}+12=.................\)

Từ đó đảo ngược y lại rồi đổi dấu \(\ge\) thành \(\le\)

 

 

NV
13 tháng 2 2020

a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)

Dấu "=" xảy ra khi \(x+3=5-x\Leftrightarrow x=1\)

b/ \(y=x\left(6-x\right)\le\frac{1}{4}\left(x+6-x\right)^2=9\)

\("="\Leftrightarrow x=3\)

c/ \(y=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)

\("="\Leftrightarrow x=-\frac{1}{4}\)

d/ \(y=\frac{1}{2}\left(2x+5\right)\left(10-2x\right)\le\frac{1}{8}\left(2x+5+10-2x\right)^2=\frac{225}{8}\)

\("="\Leftrightarrow x=\frac{5}{4}\)

e/ \(y=3\left(2x+1\right)\left(5-2x\right)\le\frac{3}{4}\left(2x+1+5-2x\right)^2=27\)

\("="\Leftrightarrow x=1\)

f/ \(\frac{x}{x^2+2}\le\frac{x}{2\sqrt{x^2.2}}=\frac{1}{2\sqrt{2}}\)

\("="\Leftrightarrow x=\sqrt{2}\)

g/ \(y=\frac{x^2}{\left(x^2+\frac{3}{2}+\frac{3}{2}\right)^3}\le\frac{x^2}{\left(3\sqrt[3]{\frac{9}{4}x^2}\right)^3}=\frac{4}{243}\)

\("="\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\pm\sqrt{\frac{3}{2}}\)

19 tháng 3 2020

Giúp mình hoàn thành các bài tập này với ạ.Cảm ơn rất nhìuuuuuuu @@@

19 tháng 3 2020

@Akai Haruma

9 tháng 2 2020

A = \(\frac{3x}{2}+\frac{2}{x-1}=3.\frac{x-1}{2}+\frac{2}{x-1}+\frac{3}{2}\)\(\ge2\sqrt{3}+\frac{3}{2}\)

\(\Rightarrow\)min A = \(2\sqrt{3}+\frac{3}{2}\Leftrightarrow x=\frac{2}{\sqrt{3}}+1\)(thỏa mãn)

B = \(x+\frac{3}{3x-1}=\frac{1}{3}\left(3x-1+\frac{9}{3x-1}+1\right)\)\(\ge\frac{1}{3}\left(2\sqrt{9}+1\right)=\frac{7}{3}\)

\(\Rightarrow\)min B = \(\frac{7}{3}\Leftrightarrow x=\frac{4}{3}\)

9 tháng 2 2020

\(A\) \(=\) \(3x^2\left(8-x^2\right)\le3\frac{\left(x^2+8-x^2\right)^2}{4}=48\)

\(\Rightarrow\) maxA = 48 \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)(thỏa mãn)

\(B=\) \(4x\left(8-5x\right)\)\(=\frac{4}{5}.5x\left(8-5x\right)\le\frac{4}{5}.\frac{\left(5x+8-5x\right)^2}{4}=\frac{64}{5}\)

\(\Rightarrow\)max B = \(\frac{64}{5}\Leftrightarrow x=\frac{4}{5}\)(thỏa mãn)

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\) 2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\) 3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\) 4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\) 5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\) 6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\) 7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\) 8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\) 9. \(x^2+6x+8=3\sqrt{x+2}\) 10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\) 11. ...
Đọc tiếp

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)

2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)

3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)

4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)

5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)

6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)

7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)

8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

9. \(x^2+6x+8=3\sqrt{x+2}\)

10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)

11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)

12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)

13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)

15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)

16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)

17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)

18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)

19. \(x^4+x^2-20=0\)

20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)

21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)

22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)

23. \(x^2+6x+5=\sqrt{x+7}\)

24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)

25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)

26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)

27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)

29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)

30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)

12
20 tháng 3 2020

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)

PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)

Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)

giai tiep

20 tháng 3 2020

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)

hệ phương trình 1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\) 3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\) 4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\) 5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\) 6 ,...
Đọc tiếp

hệ phương trình

1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\)

3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\)

4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\)

5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}\frac{x+1}{y-1}=5\\3\left(2x-2\right)-4\left(3x+4\right)=5\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}2x+y=4\\\left|x-2y\right|=3\end{matrix}\right.\)

8 , \(\left\{{}\begin{matrix}\frac{2x}{x+1}+\frac{y}{y+1}=3\\\frac{x}{x+1}-\frac{3y}{y+1}=-1\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}y-\left|x\right|=1\\2x-y=1\end{matrix}\right.\)

10 , \(\left\{{}\begin{matrix}\sqrt{x+3y}=\sqrt{3x-1}\\5x-y=9\end{matrix}\right.\)

0