K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Xét 

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca+abc\le1\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1\)

Dấu "=" xảy ra tại \(a=b=0;c=1\) và các hoán vị.

28 tháng 11 2019

o lờ mờ dấu "=" xảy ra khi a=b=0;c=1 và các hoán vị hoặc a=b=1;c=0 và các hoán vị 

\(A=a\left(1-b\right)+b\left(1-c\right)+c\left(1-a\right)\ge0\)

Dấu "=" xảy ra khi a=b=c=0 hoặc a=b=c=1 

15 tháng 3 2021

Đặt a + b + c = t \(\left(3\ge t\ge\sqrt{3}\right)\).

Ta có \(P=\dfrac{t^2-3}{2}+3t=\dfrac{t^2+6t-3}{2}=\dfrac{\left(t-\sqrt{3}\right)\left(t+6+\sqrt{3}\right)+6\sqrt{3}}{2}\ge3\sqrt{3}\).

Đẳng thức xảy ra khi a = 0, b = \(\sqrt{3}\), c = 0.

NV
12 tháng 11 2021

Em tham khảo ở đây:

xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24

12 tháng 11 2021

vậy không có tìm GTLN hay sao ạ?

27 tháng 5 2018

a+b+c=abc à

28 tháng 5 2018

uk bạn ơi

21 tháng 1 2020

Đầu tiên tiền điều kiện để phương trình bậc 2 có 2 nghiệm thuộc [0; 1] trước đi sẽ có điều kiện của a,b,c lúc đó thì giải bất như bài bất bình thường.

28 tháng 4 2017

Đặt \(THANG=ab\left(a+1\right)+bc\left(b+1\right)+ca\left(c+1\right)\) :v

\(0\le a;b;c\le1\)\(\Rightarrow\left\{{}\begin{matrix}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow THANG\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)

\(a+b+c\ge2\) nên \(a+b+c-1\ge1\). Vậy \(THANG\ge2\cdot1=2\)

Đẳng thức xảy ra khi trong 3 số \(a;b;c\) có 2 số bằng 1 và một số bằng 0

29 tháng 4 2017

hi còn cách làm khác ko thắng cho mik xin lun :v

19 tháng 5 2017

Vì \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{cases}}\)

\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow VT\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)

Do \(a+b+c\ge2\Rightarrow a+b+c-1\ge1\Rightarrow VT\ge2\)

Đẳng thức xảy ra khi 1 trong 3 số a,b,c có 2 số bằng 1 và 1 số bằng 0

19 tháng 5 2017

bạn thử giải hộ mình mấy bài này vs

https://diendantoanhoc.net/topic/173087-to%C3%A1n-%C3%B4n-thi-v%C3%A0o-l%E1%BB%9Bp-10/#entry681162