\(A=\frac{x^4+1}{\left(x^2+1\right)^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

Đk: \(x\ge2;y\ge-1;0< x+y\le9\)

Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)

Từ giả thiết suy ra

\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)

Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:

\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)

\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)

Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)

Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)

\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

NV
6 tháng 8 2020

1.

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(y\left(0\right)=5;\) \(y\left(1\right)=3;\) \(y\left(2\right)=7\)

\(\Rightarrow y_{min}=3\)

2.

\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{2}\end{matrix}\right.\)

\(f\left(-2\right)=-3\) ; \(y\left(0\right)=-3\) ; \(y\left(-\sqrt{2}\right)=-7\) ; \(y\left(1\right)=-6\)

\(\Rightarrow y_{max}=-3\)

3.

\(y'=\frac{\left(2x+3\right)\left(x-1\right)-x^2-3x}{\left(x-1\right)^2}=\frac{x^2-2x-3}{\left(x-1\right)^2}=0\Rightarrow x=-1\)

\(y_{max}=y\left(-1\right)=1\)

4.

\(y'=\frac{2\left(x^2+2\right)-2x\left(2x+1\right)}{\left(x^2+2\right)^2}=\frac{-2x^2-2x+4}{\left(x^2+2\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(y\left(1\right)=1\) ; \(y\left(-2\right)=-\frac{1}{2}\Rightarrow y_{min}+y_{max}=-\frac{1}{2}+1=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Bài 2: Mình nghĩ điều kiện sửa thành $a,b\in\mathbb{N}$ thôi thì đúng hơn.
ĐKĐB $\Leftrightarrow \log_2[(2x+1)(y+2)]^{y+2}=8-(2x-2)(y+2)$

$\Leftrightarrow (y+2)\log_2[(2x+1)(y+2)]=8-(2x-2)(y+2)$

$\Leftrightarrow (y+2)[\log_2[(2x+1)(y+2)]+(2x-2)]=8$

$\Leftrightarrow \log_2[(2x+1)(y+2)]+(2x-2)]=\frac{8}{y+2}$

$\Leftrightarrow \log_2(2x+1)+\log_2(y+2)+(2x+1)-3=\frac{8}{y+2}$
$\Leftrightarrow \log_2(2x+1)+(2x+1)=\frac{8}{y+2}+3-\log_2(y+2)=\frac{8}{y+2}+\log_2(\frac{8}{y+2})(*)$

Xét hàm $f(t)=\log_2t+t$ với $t>0$

$f'(t)=\frac{1}{t\ln 2}+1>0$ với mọi $t>0$

Do đó hàm số đồng biến trên TXĐ
$\Rightarrow (*)$ xảy ra khi mà $2x+1=\frac{8}{y+2}$

$\Leftrightarrow 8=(2x+1)(y+2)$

Áp dụng BĐT AM-GM:

$8=(2x+1)(y+2)\leq \left(\frac{2x+1+y+2}{2}\right)^2$

$\Rightarrow 2\sqrt{2}\leq \frac{2x+y+3}{2}$

$\Rightarrow 2x+y\geq 4\sqrt{2}-3$

Vậy $P_{\min}=4\sqrt{2}-3$

$\Rightarrow a=4; b=2; c=-3$

$\Rightarrow a+b+c=3$

Đáp án B.

NV
23 tháng 8 2020

2.

\(\Leftrightarrow\left(y+2\right)log_2\left(2x+1\right)\left(y+2\right)=8-\left(2x-2\right)\left(y+2\right)\)

\(\Leftrightarrow log_2\left(2x+1\right)\left(y+2\right)=\frac{8}{y+2}-2x+2\)

\(\Leftrightarrow log_2\left(2x+1\right)+log_2\left(y+2\right)=\frac{8}{y+2}-2x+2\)

\(\Leftrightarrow log_2\left(2x+1\right)+\left(2x+1\right)=-log_2\left(y+2\right)+3+\frac{8}{y+2}\)

\(\Leftrightarrow log_2\left(2x+1\right)+\left(2x+1\right)=log_2\left(\frac{8}{y+2}\right)+\frac{8}{y+2}\)

Xét hàm \(f\left(t\right)=log_2t+t\Rightarrow f'\left(t\right)=\frac{1}{t.ln2}+1>0;\forall t>0\)

\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow2x+1=\frac{8}{y+2}\)

\(\Rightarrow2x=\frac{8}{y+2}-1=\frac{6-y}{y+2}\)

\(\Rightarrow P=2x+y=y+\frac{6-y}{y+2}=y+\frac{8}{y+2}-1\)

\(\Rightarrow P=y+2+\frac{8}{y+2}-3\ge2\sqrt{\frac{8\left(y+2\right)}{y+2}}-3=4\sqrt{2}-3\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\\c=-3\end{matrix}\right.\) \(\Rightarrow a+b+c=3\)

6 tháng 8 2020

tóm lại kết quả là 2 hay 1 vậy bạn

NV
6 tháng 8 2020

4.

\(xy+y=2\Leftrightarrow xy=2-y\Rightarrow x=\frac{2-y}{y}=\frac{2}{y}-1\)

\(\Rightarrow P=x+y^2=y^2+\frac{2}{y}-1\)

\(\Rightarrow P=y^2+\frac{1}{y}+\frac{1}{y}-1\ge3\sqrt[3]{\frac{y^2}{y.y}}-1=2\)

\(\Rightarrow P_{min}=2\) khi \(x=y=1\)

29 tháng 9 2016

Giải:

Ta có: \(\frac{x-2}{5}=\frac{2x-3}{4}\)

\(\Rightarrow\left(x-2\right).4=5.\left(2x-3\right)\)

\(\Rightarrow4x-8=10x-15\)

\(\Rightarrow4x-10x=8-15\)

\(\Rightarrow-6x=-7\)

\(\Rightarrow x=\frac{7}{6}\)

Vậy \(x=\frac{7}{6}\)

30 tháng 9 2016

Giải :

Ta có : \(\frac{x-2}{5}=\frac{2x-3}{4}\)

\(\Rightarrow\left(x-2\right),4=5,\left(2x-3\right)\)

\(\Rightarrow4x-8=10x-15\)

\(\Rightarrow4x-10x=8-15\)

\(\Rightarrow-6x=-7\)

\(\Rightarrow x=\frac{7}{6}\)

Vậy \(x\) là \(\frac{7}{6}\)

14 tháng 5 2016

a. \(y=\left(x^2-4\right)^{\frac{\pi}{2}}\)

Điều kiện \(x^2-4>0\Leftrightarrow\left[\begin{array}{nghiempt}x< -2\\x>2\end{array}\right.\)

Suy ra tập xác đinh \(D=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)

 

b.\(y=\left(6-x-x^2\right)^{\frac{1}{3}}\)

Điều kiện \(6-x-x^2>0\Leftrightarrow x^2+x-6< 0\)

                                      \(\Leftrightarrow-3< x< x\)

Vậy tập xác định là \(D=\left(-3;2\right)\)

17 tháng 12 2017

Cách giải

26 tháng 3 2016

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)