K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

Ta có : \(A=5-8x-x^2\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0\forall x\in R\)

Nên : \(-\left(x+4\right)^2+21\ge21\forall x\in R\)

Vậy : \(A_{min}=21\) khi x = -4

6 tháng 1 2021

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

18 tháng 7 2017

A= (4x2+8xy+4y2)+ (x2-2x+1)-1+(y2+2y+1)-1+2019= 4(x+y)2 + (x-1)2+(y+1)2+2017 \(\ge\)2017

Dấu "=" xảy ra khi      \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)

Vậy MinA= 2017 khi x=1; y=-1

 

A=5+ (-x2+2x) +(-4y2-4y)= -(x2-2x+1)+1-(4y2+4y+1)+1+5=-(x-1)2-(2y+1)2 +7 \(\le\)7

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)

Vậy Max A bằng 7 khi x=1; y=-1/2

 

 

8 tháng 7 2018

Nguyễn Ngọc Sáng theo mình là đề sai nên sửa thành x2

8 tháng 7 2018

a,sửa x8 thành x2

\(A=5-8x-x^2=-\left(x^2+8x+16\right)+21=-\left(x+2\right)^2+21\le21\)

Dấu "=" xảy ra khi x+2=0 <=> x=-2

Vậy Amax = 21 khi x = -2

b,\(B=5-x^2+2x-4y^2-4y=-\left(x^2+2x+1\right)-\left(4y^2+4y+1\right)+7=-\left(x+1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+1=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy Bmax = 7 khi x=-1,y=-1/2

\(A=5-x^2+2x-4y^2-4y=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\\ =-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\2y+1=0\end{matrix}\right.\Rightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-0,5\end{matrix}\right.\)

vậy MAX A=7 tại \(\left\{{}\begin{matrix}x=1\\y=-0,5\end{matrix}\right.\)

\(D=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

đặt: \(t=x^2+5x\) khi đó:

\(D=\left(t-6\right)\left(t+6\right)\\ D=t^2-36\ge-36\)

đẳng thức xảy ra khi :

\(t=0\\ \Leftrightarrow x^2+5x=0\\ x\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

vậy MAX D=-36 tại x=0 hoặc x=-5

14 tháng 7 2017

M = 5 - x2 + 2x - 4y2 - 4y

= (- x2 + 2x - 1) + (- 4y2 - 4y - 1) + 7

= 7 - (x - 1)2 - (2y + 1)2\(\le7\)

Dấu "=" xảy ra khi x = 1 và y = - 0,5

(^~^)

M = - x2 + 2xy - 4y2 + 2x + 10y - 8

- M = x2 - 2xy + 4y2 - 2x - 10y + 8

= (y2 + 1 + x2 + 2y - 2xy - 2x) + (3y^2 - 12y + 12) - 5

\(=\left(y+1-x\right)^2+3\left(y-2\right)^2-5\ge-5\)

\(\Rightarrow M\le5\)

Dấu "=" xảy ra khi y = 2 và x = 3.

5 tháng 10 2021

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

5 tháng 10 2021

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)