Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
a) Đề ( \(x\ne\pm1\))
>\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{4}{\left(x+1\right)\left(x-1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=4\\ \Leftrightarrow2.2x=4\Leftrightarrow x=1\left(kothỏa\right)\)
Vậy \(S=\varnothing\)
b) đề \(\left(x\ne-\frac{1}{2},\frac{1}{2}\right)\)
\(\frac{32x^2}{12\left(1-2x\right)\left(1+2x\right)}=\frac{-8x\left(1+2x\right)}{12\left(1-2x\right)\left(1+2x\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(1+2x\right)}\\ \Leftrightarrow32x^2=-8x-16x^2-3-12x+48x^2\\ \Leftrightarrow20x+3=0\Leftrightarrow x=\frac{20}{3}\left(thỏadk\right)\)
Vậy \(S=\left\{\frac{20}{3}\right\}\)
tìm tử thức là 2 ko đổi để bt A có GTNN khi mẫu thức \(6x-5-9x^2\)có GTLN mà\(6x-5-9x^2=-(9x^2-6x-5)=-3(3x^2-2x+\frac{5}{3})\)\(=-3[(3x^2-2x\frac{1}{2}+\frac{1}{4})-\frac{1}{4}+\frac{5}{3}]\) \(=-3[(3x-\frac{1}{2})^2+\frac{17}{12}=-\frac{17}{4}-3(3x-\frac{1}{2})^2\)vì \((3x-\frac{1}{2})^2\ge0\forall x\Rightarrow6x-5-9x^2=-\frac{17}{4}-3(3x-\frac{1}{2})^2\le-\frac{17}{4}\)vậy GTLN \((6x-5-9x^2)\)bằng \(-\frac{17}{4}\)đạt được khi \((3x-\frac{1}{2})^2=0\Rightarrow x=\frac{1}{6}\Rightarrow\)\(A\ge\frac{2}{\frac{-17}{4}}=2\times\frac{-17}{4}=-\frac{17}{2}\) vậy MIN \((A)=-\frac{17}{2}\)đạt được \(\Leftrightarrow x=\frac{1}{6}\)