Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left|3x-1\right|+\left|2x-1\right|+\left|x-1\right|=\left|3x-1\right|+\left|1-2x\right|+\left|x-1\right|\)
Theo BĐT chứa dấu GTTĐ : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(E\ge\left|3x-1+1-2x\right|+\left|x-1\right|=\left|x\right|+\left|x+1\right|=\left|x\right|+\left|-x-1\right|\)
\(\ge\left|x-x-1\right|=\left|-1\right|=1\)
Dấu ''='' xảy ra khi \(\left(3x-1\right)\left(1-2x\right)\ge0;x\left(-x-1\right)\ge0\)
\(\Leftrightarrow\frac{1}{3}\le x\le\frac{1}{2};-1\le x\le0\Leftrightarrow-1\le x\le\frac{1}{2}\)
Vậy GTNN của E bằng 1 tại -1 =< x =< 1/2
sai dòng 3 rồi nhé, mình sửa bài
\(E\ge\left|3x-1+1-2x\right|+\left|x-1\right|=\left|x\right|+\left|1-x\right|\ge\left|x+1-x\right|=1\)
Dấu ''='' xảy ra khi \(\left(3x-1\right)\left(1-2x\right)\ge0;x\left(1-x\right)\ge0\)
\(\Leftrightarrow\frac{1}{3}\le x\le\frac{1}{2};0\le x\le1\Leftrightarrow0\le x\le1\)
Vậy GTNN của E bằng 1 tại 0 =< x =< 1
1: A=(x-1)^2>=0
Dấu = xảy ra khi x=1
5: B=-(x^2+6x+10)
=-(x^2+6x+9+1)
=-(x+3)^2-1<=-1
Dấu = xảy ra khi x=-3
2: B=x^2+4x+4-9
=(x+2)^2-9>=-9
Dấu = xảy ra khi x=-2
6: =-(x^2-5x-3)
=-(x^2-5x+25/4-37/4)
=-(x-5/2)^2+37/4<=37/4
Dấu = xảy ra khi x=5/2
3: =x^2+x+1/4-1/4
=(x+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-1/2
7: =4x^2+4x+1-2
=(2x+1)^2-2>=-2
Dấu = xảy ra khi x=-1/2
\(E=\left(3x-5\right)^2+1\)
\(\left(3x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x+5\right)^2+1\ge1\forall x\)
\(E_{min}=1\Leftrightarrow\left(3x-5\right)^2=0\\ \Leftrightarrow3x-5=0\\ \Leftrightarrow3x=5\\ \Leftrightarrow x=\dfrac{5}{3}\)
Vậy \(E_{min}=1\Leftrightarrow x=\dfrac{5}{3}\)