\(x^2+y^2-x+6y+15\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

\(x^2+y^2-x+6y+15\)

=\(x^2-2.\frac{1}{2}.x+\frac{1}{4}+y^2+6y+9+\frac{23}{4}\)

=\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\)>=\(\frac{23}{4}\)

Dấu "=" xảy ra khi và chỉ khi :

\(x=\frac{1}{2}\);\(y=-3\)

Vậy GTNN của bt trên là \(\frac{23}{4}\)khi \(x=\frac{1}{2}\);\(y=-3\).

13 tháng 6 2017

a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)

\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x=2;y=1

b) tương tự câu a

16 tháng 6 2017

c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)

\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)

\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)

\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)

Dấu "=" xảy ra khi x=2;y=1

6 tháng 12 2019

Sửa đề

\(P=\frac{x^2-6xy+6y^2}{x^2-2xy+y^2}\)

\(\Leftrightarrow P+3=\frac{x^2-6xy+6y^2}{x^2-2xy+y^2}+3=\frac{\left(3y-2x\right)^2}{\left(x-y\right)^2}\ge0\)

\(\Leftrightarrow P\ge-3\)

30 tháng 9 2020

Ta có: 

\(M=x^2+y^2-x+6y+10\)

\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

30 tháng 9 2020

M = x2 + y2 - x + 6y + 10

= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4

= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x

Dấu "=" xảy ra <=> x = 1/2 ; y = -3

=> MinM = 3/4 <=> x = 1/2 ; y = -3

6 tháng 11 2016

Hay lắm bạn ơi! Nhưng ở chỗ kết luận sau khi nói bthuc có GTNN là 2006 thì bạn phải tìm ra x,y để bthuc trên đạt GTNN

 VD:        x^2 + y^2 - 2x + 6y + 2016 có giá trị nhỏ nhất là 2006 đạt được khi x=1; y=-3

     Như vậy mới được điểm tối đa

6 tháng 11 2016

Very good!You' ve done it without mistakes.

2 tháng 11 2016

2 a) x2 + 4x + 5

= x2 + 2.x.2 + 22 + 1

=(x + 2)2 +1

vì (x + 2)2 lớn hơn hoặc bằng 0 với mọi x

suy ra A luôn lớn hơn hoặc bằng 1

dấu '=' xảy ra khi x+2=0 suy ra x=-2

vậy GTNN của A là 1 khi x= -2

b)x2 + y2 - 4x +6y +13=0

(x2 - 4x +4)+(y2 + 6y +9)=0

(x-2)2 + (y+3)2 =0

(x - 2)2 lớn hơn hoặc bằng 0 với mọi x

(y+3)2 lớn hơn hoặc bằng 0 với mọi y

nên để (x-2)2 + (y+3)2 =0

thì x-2=0 và y+3=0

x=2; y= -3