Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 + 15y^2 + xy + 8x + y + 2020
= ( x^2 + y^2/4 + 16 + xy + 8x + 4y ) + 59/4.( y^2 + 16/59y + 64/3481 )
= ( x + y/2 + 4 )^2 + 59/4 .( y + 8/59 )^2 + 119220/59 ≥ 119220/59
Dấu = xảy ra <=> y = -8/59 và x = -228/59
\(P=\frac{2020}{x^2+y^2}+\frac{2019}{xy}\)
\(P=\frac{2020}{\left(x+y\right)^2-2xy}+\frac{2019}{xy}\)
\(P=\frac{-2020}{2xy-4}+\frac{2019}{xy}\)
\(P=\frac{-1010}{xy-2}+\frac{2019}{xy}\)
Áp dụng bđt AM-GM : \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{4}{4}=1\)
\(P\ge\frac{-1010}{1-2}+\frac{2019}{1}=3029\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
Bonking cách em nè:)Gọn hơn xíu:v
\(P=\frac{2020}{x^2+y^2}+\frac{1010}{xy}+\frac{1009}{xy}\)\(=2020\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1009}{xy}\)
\(\ge\frac{2020.4}{\left(x+y\right)^2}+\frac{1009}{\frac{\left(x+y\right)^2}{4}}=2020+1009=3029\)
Đẳng thức xảy khi x = y = 1
Vậy..
a/ A = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
= (x - y)2 + (x - 1)2 + 2\(\ge2\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
\(A=3x^2+8y^2+8xy+2020=2x^2+8xy+8y^2+x^2+8x+16+2004.\)
\(=2\left(x^2+4xy+4y^2\right)+\left(x+4\right)^2+2004\)
\(=2\left(x+2y\right)^2+\left(x+4\right)^2+2004\)
ta thấy \(\left(x+4\right)^2\ge0\)dấu "=" xảy ra khi x=-4
và \(2\left(x+2y\right)^2\ge0\)dấu "=" xảy ra khi x=-2y
\(\Rightarrow\left(x+4\right)^2+2\left(x+2y\right)^2\ge0\)dấu "=" xảy ra khi x=4 và y=2
\(\Rightarrow\left(x+4\right)^2+2\left(x+2y\right)^2+2004\ge2004\)dấu "=" xảy ra khi x=4 và y=2
\(\Rightarrow A\ge2004\). dấu "=" xảy ra khi x=4 và y=2
min a=2004 khi x=4 và y=2
\(3x^2+8y^2+8xy+8x+2020\)
\(=4x^2-x^2+4y^2+4y^2+8xy+8x+2036-16\)
\(=\left(4x^2+8xy+4y^2\right)+\left(-x^2+8x-16\right)+4y^2+2036\)
\(=4\left(x^2+2xy+y^2\right)-\left(x^2-8x+16\right)+4y^2+2036\)
\(=4\left(x+y\right)^2-\left(x-4\right)^2+4y^2+2036\)
Đặt \(A=4\left(x+y\right)^2-\left(x-4\right)^2\)
Đặt \(B=4y^2+2036\)
Vì \(4\left(x+y\right)^2\ge0\)
\(\left(x-4\right)^2\ge0\)
\(\Rightarrow A=4\left(x+y\right)^2-\left(x-4\right)^2\ge0\)
\(\Rightarrow GTNN_A=0\)tại \(x=4\)và \(y=-4\)
Thế \(y=-4\)vào B, ta có:
\(B=4\left(-4\right)^2+2036\)
\(B=2100\)
Vậy GTNN của biểu thức trên bằng \(GTNN_A+B=0+2100=2100\)
a, \(\frac{x+2y}{8x^2y^5}-\frac{3x^2+2}{12x^4y^4}\)
=\(\frac{\left(x+2y\right)3x^2}{24x^4y^5}-\frac{\left(3x^2+2\right)2y}{24x^4y^5}\)
=\(\frac{3x^3+6x^2y}{24x^4y^5}-\frac{6x^2y+4y}{24x^4y^5}\)
=\(\frac{3x^3+6x^2y-6x^2y-4y}{24x^4y^5}\)
=\(\frac{3x^3-4y}{24x^4y^5}\)
b,\(\frac{y}{xy-5x^2}-\frac{15y-25x}{y^2-25x^2}\)
=\(\frac{y}{x\left(y-5x\right)}-\frac{15y-25x}{\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y\left(y+5x\right)}{x\left(y-5x\right)\left(y+5x\right)}-\frac{\left(15y-25x\right)x}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2+5xy}{x\left(y-5x\right)\left(y+5x\right)}-\frac{15xy-25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2-10xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y-5x}{x\left(y+5x\right)}\)
c,\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x^3-x^2\right)+\left(2x-2\right)}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{\left(x+5\right)x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{4x-4-x^2+x}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{4x-4-x^2+x-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2}{x\left(x-1\right)}\)
Đặt \(A=x^2+15y^2+xy+8x+y+2020\)
\(\Rightarrow4A=4x^2+60y^2+4xy+32x+4y+8080\)
\(=\left(4x^2+4xy+y^2\right)+59y^2+32x+4y+8080\)
\(=\left(2x+y\right)^2+16.\left(2x+y\right)+64+59y^2+4y-16y+8016\)
\(=\left(2x+y+8\right)^2+59y^2-12y+8016\)
\(=\left(2x+y+8\right)^2+59\cdot\left(y^2-\frac{59}{12}y\right)+8016\)
\(=\left(2x+y+8\right)^2+59\cdot\left(y^2-2\cdot y\cdot\frac{59}{24}+\frac{59^2}{24^2}-\frac{59^2}{24^2}\right)+8016\)
\(=\left(2x+y+8\right)^2+59\cdot\left(y-\frac{59}{24}\right)^2+7659,439236\ge7659,439236\)
\(\Rightarrow A\ge1914,859809\)
Dấu "=" xảy ra \(\Leftrightarrow y=\frac{59}{14};x=-\frac{171}{28}\)
P/s : Bài này hơi xấu .....
Đặt \(A=x^2+15y^2+xy+8x+y+2020\)
Ta có: \(A=x^2+x\left(y+8\right)+15y^2+y+2020=\left(x^2+x\left(y+8\right)+\frac{\left(y+8\right)^2}{4}\right)\)\(+\left(15y^2+y-\frac{\left(y+8\right)^2}{4}\right)+2020=\left(x+\frac{y+8}{2}\right)^2+\frac{59y^2-12y-64}{4}+2020\)\(=\left(x+\frac{y+8}{2}\right)^2+\frac{59\left(y-\frac{6}{59}\right)^2-\frac{3812}{59}}{4}+2020\ge\frac{\frac{-3812}{59}}{4}+2020=\frac{118227}{59}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}y-\frac{6}{59}=0\\x=-\frac{y+8}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-239}{59}\\y=\frac{6}{59}\end{cases}}\)