\(\sqrt{P}\)biết P=\(\frac{x}{\sqrt{x}-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

\(ĐK:x\ge0;x\ne1\)

Ta có: \(\sqrt{P}\ge0\)

Vậy giá trị nhỏ nhất của P là 0 khi \(\frac{x}{\sqrt{x}-1}=0\Leftrightarrow x=0\)

15 tháng 10 2020

Chỗ dòng cuối là GTNN của căn P chứ ko pk P nha, mik đánh nhầm

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

a: \(P=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1+\sqrt{x}}{x+1}\)

\(=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x+\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

 

\(A=\left(\frac{\sqrt{X}}{\sqrt{X}+1}+\frac{\sqrt{X}+1}{1-\sqrt{X}}+\frac{4\sqrt{X}+1}{X-1}\right)\left(\frac{X\sqrt{X}}{\sqrt{X}+1}-\sqrt{X}\right)\)

     \(=\left(\frac{\sqrt{X}-\sqrt{X}-1+4\sqrt{X}+1}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\right)\left(X-\sqrt{X}\right)\)

     \(=\frac{4\sqrt{X}}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}.\sqrt{X}\left(\sqrt{X}-1\right)\)

\(A=\frac{4X}{\sqrt{X}+1}\)

B) dễ rồi làm tiếp ik chỉ cần biến về \(\left(a+b\right)^2+hs\le hs\) là được

28 tháng 5 2019

Câu a  Bùi Vương chưa quy đồng thì phải

25 tháng 11 2018

có ai giúp mình giải bài này không please