\(\frac{x^2-x+1}{x^2+x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

Xet \(P-\frac{1}{3}=\frac{x^2-x+1}{x^2+x+1}-\frac{1}{3}=\frac{3x^2-3x+3-\left(x^2+x+1\right)}{x^2+x+1}=\frac{2x^2-4x+2}{x^2+x+1}\)

 =\(\frac{2\left(x^2-2x+1\right)}{x^2+x+1}=\frac{2\left(x-1\right)^2}{x^2+x+1}\ge0\) (do \(x^2+x+1>0\forall x\) )

Suy ra \(P\ge\frac{1}{3}\)

Dau = xay ra khi \(x-1=0\Leftrightarrow x=1\)

22 tháng 8 2020

Ta CM 1 số BĐT phụ sau :

\(\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab-4ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(true\right)\)

và \(x^2+x+1=x^2+2x+1-x\ge\left(x+1\right)^2-\frac{\left(x+1\right)^2}{4}=\frac{3\left(x+1\right)^2}{4}\)

\(\Rightarrow P=\frac{x^2-x+1}{x^2+x+1}=1-\frac{2x}{x^2+x+1}\)

\(\ge1-\frac{\frac{\left(x+1\right)^2}{2}}{x^2+x+1}\ge1-\frac{\frac{\left(x+1\right)^2}{2}}{\frac{3\left(x+1\right)^2}{4}}=1-\frac{2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra khi \(x+1=0\Leftrightarrow x=-1\)

30 tháng 7 2019

a) \(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{x^2-1}\)

\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(2x-3\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2-x-3}{\left(x-1\right)\left(x+1\right)}\)

\(B=\frac{\left(x^2-x\right)+\left(2x^2+2x-3x-3\right)-\left(2x^2-x-3\right)}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x^2-x}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x}{x+1}\)

30 tháng 7 2019

MÌnh nghĩ đề câu b là với x>-4 mới đúng chứ

\(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{\left(x^2-1\right)}.\)

\(=\frac{x\left(x-1\right)+\left(2x-3\right)\left(x+1\right)-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)

\(\Rightarrow A.B=\frac{x}{\left(x+1\right)}.\frac{x\left(x+1\right)}{\left(x-2\right)}=\frac{x^2}{\left(x-2\right)}=\frac{x^2-4+4}{\left(x-2\right)}\)

\(=\frac{\left(x-2\right)\left(x+2\right)+4}{\left(x-2\right)}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Áp dụng BĐT Cô - Si cho 2 số dương \(x-2;\frac{4}{x-2}\)ta có :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\frac{\left(x-2\right).4}{x-2}}=2\sqrt{4}=4\)

\(\Rightarrow x-2+\frac{4}{x-2}\ge4\Rightarrow x-2+\frac{4}{x-2}+4\ge8\)

Hay \(S_{min}=4\Leftrightarrow x-2=\frac{4}{x-2}\)

\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)}=\frac{4}{x-2}\Rightarrow x^2+4x+4=4\)

\(\Rightarrow x^2+4x=0\Rightarrow x\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)\(\Rightarrow...\)

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha