Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
ĐKXĐ: x>4
Ta có: \(\dfrac{\sqrt{x+5}}{\sqrt{x-4}}=\dfrac{\sqrt{x-2}}{\sqrt{x+3}}\)
\(\Leftrightarrow x^2+8x+15=x^2-6x+8\)
\(\Leftrightarrow8x+6x=8-15\)
\(\Leftrightarrow14x=-7\)
hay \(x=-\dfrac{1}{2}\)(loại)
2) Ta có: \(\sqrt{4x^2-9}=3\sqrt{2x-3}\)
\(\Leftrightarrow\sqrt{2x-3}\left(\sqrt{2x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
Bạn gõ bằng công thức trực quan để được giúp đỡ nhanh hơn nhé, chứ mình nhìn thế không dịch được (Nhấp vào biểu tượng chữ M nằm ngang)
\(c,=2+2\sqrt{3}-\left(2+\sqrt{2}\right)=2\sqrt{3}-\sqrt{2}\\ d,=\sqrt{\left(2x-3\right)^2}-2x+1=\left|2x-3\right|-2x+1\\ =2x-3-2x+1=-2\left(x\ge\dfrac{3}{2}\Leftrightarrow2x-3\ge0\right)\)
Áp dụng bất dẳng thức AM-GM ta có:
\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{208}{24xy}\ge\frac{\left(2+2\right)^2}{4x^2+9y^2+12xy}+\frac{208}{\left(2x+3y\right)^2}=\frac{16}{\left(2x+3y\right)^2}+\frac{208}{\left(2x+3y\right)^2}\ge\frac{16}{4}+\frac{208}{4}=56\)
Đẳng thức xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}2x=3y\\2x+3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Vậy Amin = 56 \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
Ta có \(\frac{9+4x^2+4x^3+x^4}{x^2+2x}=\frac{x^2\left(x^2+2\right)+2x\left(x^2+2x\right)+9}{x^2+2x}\)
= x2 + 2x + \(\frac{9}{x^2+2x}\)
= (\(\frac{3}{\sqrt{x^2+2x}}-\sqrt{x^2+2x}\))2 + 6 \(\ge6\)
\(\frac{9+x^2\left(x^2+2x\right)+2x\left(x^2+2x\right)}{x^2+2x}\)
Nha a viết láu táu nên thiếu mất x