Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hy vọng bạn học BĐT Cauchy rồi
\(x\ne-1\)
Đặt \(\left(x+1\right)^2=a>0\Rightarrow P=\frac{\left(a+2\right)\left(a+8\right)}{a}=\frac{a^2+10a+16}{a}\)
\(P=a+\frac{16}{a}+10\ge2\sqrt{a.\frac{16}{a}}+10=18\)
\(\Rightarrow P_{min}=18\) khi \(a=4\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
ĐK: \(\left(x-2\right)\left(x^2+1\right)+2x\left(x-2\right)\ne0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\ne0\Leftrightarrow x\ne-1;2\)
Ta có: \(A=\frac{x^2\left(x-2\right)+4\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+1\right)}=\frac{x^2+4}{\left(x+1\right)^2}=\frac{t^2-2t+5}{t^2}\left(t=x+1\right)\)
\(=\frac{5}{t^2}-\frac{2}{t}+1=5\left(\frac{1}{t}-\frac{1}{5}\right)^2+\frac{4}{5}\ge\frac{4}{5}\)
Đẳng thức xảy ra khi t = 5 hay x=4
Vậy..
\(A=x^2-4xy+4y^2+\frac{x}{2}+\frac{2}{x}+3=\left(x-2y\right)^2+\left(\frac{x}{2}+\frac{2}{x}\right)+3\)
\(\left(x-2y\right)^2\ge0\)
\(\frac{x}{2}+\frac{2}{x}\ge2\sqrt{\frac{x}{2}.\frac{2}{x}}=2\)
\(A\ge0+2+3=5\)
Giá trị nhỏ nhất của A bằng 5
"=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2y=0\\\frac{x}{2}=\frac{2}{x}\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x dương
a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{\left(x^2-2x\right)\left(x-2\right)}{2\left(x-2\right)\left(x^2+4\right)}+\dfrac{4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3-x^2-2x^2+4x+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3+x^2+4x}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{x\left(x^2+x+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{\left(x^2+x+4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)
khai triển ra còn 4x^2+4y^2+1/x^2+1/y^2+8 =4(x^2+y^2)+(1/x^2+1/y^2)+8
>/ 4.(x+y)^2/2+8/(x+y)^2+8=18
"=" khi x=y=1/2
Đặt \(2x+\frac{1}{x}=a;2y+\frac{1}{y}=b\)
Ta có \(a^2+b^2>=2ab=>2\left(a^2+b^2\right)>=a^2+b^2+2ab=\left(a+b\right)^2\)
=>\(a^2+b^2>=\frac{\left(a+b\right)^2}{2}\)
Ta cần tìm giá trị nhỏ nhất của a+b
ta có \(a+b=2x+\frac{1}{x}+2y+\frac{1}{y}=2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}=2+\frac{1}{x}+\frac{1}{y}\)
Áp dụng BĐT cauchy \(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)
=>\(a+b>=2+\frac{4}{x+y}=6\)
=>a\(a^2+b^2>=\frac{6^2}{2}=18\)
=>Min \(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)=18
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
\(f\left(x\right)=\frac{2x^2-2x+3}{x^2-x+2}=\frac{2\left(x^2-x+2\right)-1}{x^2-x+2}=2-\frac{1}{x^2-x+2}=2-\frac{1}{\left(x-\frac{1}{2}\right)^2+\frac{7}{4}}\)
Ta thấy : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\forall x\)
\(\Leftrightarrow\frac{1}{\left(x-\frac{1}{2}\right)^2+\frac{7}{4}}\ge\frac{1}{\frac{7}{4}}=\frac{4}{7}\forall x\)
\(\Rightarrow f\left(x\right)=2-\frac{1}{\left(x-\frac{1}{2}\right)^2+\frac{7}{4}}\ge2-\frac{4}{7}=\frac{10}{7}\forall x\) có GTNN là \(\frac{10}{7}\)
Dấu "=" xảy ra <=> \(\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
Vậy \(f\left(x\right)_{min}=\frac{10}{7}\) tại \(x=\frac{1}{2}\)
Sai rồi bạn!