Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)
Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)
\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)
Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)
Làm sai kìa !
Cái chỗ \(\left|\sqrt{x-2}-5+3-\sqrt{x-2}\right|\ge2\) chứ ? Trị tuyệt đối luôn dương mà
Cái trên là vừa phát hiện trong khi giải cái dưới
Vấn đề là giá trị của x cơ
A = \(\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}\)
= \(\sqrt{\left(\sqrt{x-3}-1\right)^2+2}\)\(\ge\)\(\sqrt{0+2}\)=\(\sqrt{2}\)
''='' <=> x = 4
=> Min A = \(\sqrt{2}\)và x = 4
B = |x-2011| + |x-1|
TH1: x \(\le\)1
=> B = 2012 - 2x \(\ge\)2010 ''='' <=> x = 1
TH2: 1\(\le\)x\(\le\)2011
=> B = x - 1 + 2011 - x = 2010 với mọi x t/m đkiện
TH3: x \(\ge\)2011
=> B = 2x - 2012 \(\ge\)2010 ''='' <=> x = 2011
Vậy Min B = 2010 <=> 1\(\le\)x\(\le\)2011
Bài 1:
\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)
\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)
Dấu = khi \(x=\sqrt{\frac{3}{2}}\)
Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)
\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)
\(A\le2\sqrt{5}..\)
a) \(\left|x-2000\right|+\left|x-2002\right|=\left|x-2000\right|+\left|2002-x\right|\)
\(\ge\left|x-2000+2002-x\right|=2\) (1)
Dấu "=" \(\Leftrightarrow\left(x-2000\right)\left(2002-x\right)\ge0\)
\(\Leftrightarrow2000\le x\le2002\)
+ \(\left|x-2001\right|\ge0\forall x\). "=" \(\Leftrightarrow x=2001\) (2)
Từ (1) và (2) suy ra \(A\ge2\)
Dấu "=" \(\Leftrightarrow x=2001\)
b) \(B=\left|x-8\right|+\left|x-9\right|+\left|x-10\right|+\left|x+11\right|\)
+ \(\left|x-10\right|+\left|x+11\right|=\left|x+11\right|+\left|10-x\right|\)
\(\ge\left|x+11+10-x\right|=21\) (3)
Dấu "=" \(\Leftrightarrow\left(x+11\right)\left(10-x\right)\ge0\Leftrightarrow-11\le x\le10\)
+ \(\left|x-8\right|+\left|x-9\right|\ge\left|x-8+9-x\right|=1\) (4)
"=" \(\Leftrightarrow\left(x-8\right)\left(9-x\right)\ge0\Leftrightarrow8\le x\le9\)
Từ (3) và (4) suy ra \(B\ge22\)
"=" \(\Leftrightarrow8\le x\le9\)
À còn tìm GTLN nữa nha :)