Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+6x-4\)
\(=2\left(x^2+4x-2\right)\)
\(=2\left(x^2+2.x.2+4-6\right)\)
\(=2\left[\left(x+2\right)^2-6\right]\)
\(=2\left(x+2\right)^2-12\)
Luôn có \(2\left(x+2\right)^2\ge0\) =>\(2\left(x+2\right)^2-12\ge-12\) với mọi \(x\)
\(\Rightarrow A\ge-12\)
\(\Rightarrow GTNN_{\left(A\right)}=-12\)
bn giải thích cho mik chỗ \(=2\left(x^2+4x-2\right)\)
TL:
\(B=2x^2+y^2-2xy-2x+3\)
\(=\left(x^2-2xy+y^2\right)+(x^2-2x+1)+2\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\forall x;y\)
\(D=\left(x+8\right)^4+\left(x+6\right)^4\ge0\forall x\)
Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left(x+6\right)^4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-8\\x=-6\end{cases}}\)
a) Đặt \(A=10+2x-5x^2\)
\(-A=5x^2-2x-10\)
\(-5A=25x^2-10x-50\)
\(-5A=\left(25x^2-10x+1\right)-51\)
\(-5A=\left(5x-1\right)^2-51\)
Do \(\left(5x-1\right)^2\ge0\forall x\)
\(\Rightarrow-5A\ge-51\)
\(A\le\frac{51}{5}\)
Dấu "=" xảy ra khi : \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)
Vậy Max A = \(\frac{51}{5}\Leftrightarrow x=\frac{1}{5}\)
b) Đặt \(B=x^2-6x+10\)
\(B=\left(x^2-6x+9\right)+1\)
\(B=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(B\ge1\)
Dấu "=" xảy ra khi :
\(x-3=0\Leftrightarrow x=3\)
Vậy Min B \(=1\Leftrightarrow x=3\)
Ta có:
\(4x^2+4x+3=4\left(x^2+x\right)+3=4\left[x\left(x+1\right)\right]+3\)
Ta có:
x(x+1) luôn luôn là số chính phương
\(\Rightarrow B_{min}\Leftrightarrow x\left(x+1\right)=0\Rightarrow B_{min}=3\Leftrightarrow x\in\left\{-1;0\right\}\)
\(B=2x^2+6x-9=2x^2+6x+\frac{18}{4}-\frac{27}{2}=2\left(x^2+3x+\frac{9}{4}\right)-\frac{27}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{27}{2}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow B=2\left(x+\frac{3}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
Dấu "=" xảy ra khi (x+3/2)2=0 <=> x+3/2=0 <=> x=-3/2
Vậy minB=-27/2 khi x=-3/2