Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A= x^2 +3x+2= x2+2.x.32+(32)2−14=(x+32)2−14≥14
Vậy GTNN của A là 1/4
b) tương tự
~Học tốt~
Đặt x2+(3−x)2=a (a ≥ 5 )
Viết được : x4+(3−x)4 = a2 − \(\frac{1}{2}\)(9−a)2
6x2(3−x)2 = \(\frac{3}{2}\)(9−a) 2
=>P=a2+(9−a)2 = 2(a-5)2+2a+31 ≥ 0+5.2+31=41
=>Min p=41<=>x=1 hoặc x=2
\(\text {Đặt } a = x-1, b = 3-x.\\ \text {Ta có: } a + b = 2.\\ A = a^4 + b^4 + 6a^2b^2 = (a^2+b^2)^2 + (2ab)^2\\ \ge\frac{1}{2} (a^2+b^2+2ab)^2 = \frac{1}{2}(a+b)^4 = 8\)
\(\text {Theo bất đẳng thức } 2(a^2+b^2) \ge (a+b)^2\)
\(\text {Đẳng thức xảy ra khi } a = b \Leftrightarrow x = 2.\)
Cách khác:
Nếu "dự đoán" được đẳng thức xảy ra khi a = b, hay x = 2 mà chưa chứng minh được như trên, có thể làm như sau:
+ Tính A tại x = 2 (A = 8)
+ Phân tích (A - 8) thành nhân tử của (x-2)
Cụ thể
\(A - 8 = 8(x^4-8x^3+24x^2-32x+16)\\ = (x-2)^4 \ge 0\\ \Rightarrow A \ge 8\)
Câu 1:
\(x+y=2\Rightarrow y=2-x\)
\(\Rightarrow A=x^2+2\left(2-x\right)^2+x-2\left(2-x\right)+1\)
\(A=x^2+2x^2-8x+8+x-4+2x+1\)
\(A=3x^2-5x+5\)
\(A=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{35}{12}\)
\(A=3\left(x-\frac{5}{6}\right)^2+\frac{35}{12}\ge\frac{35}{12}\)
\(\Rightarrow A_{min}=\frac{35}{12}\) khi \(x=\frac{5}{6}\) ; \(y=\frac{7}{6}\)
Câu 2:
\(x+2y=1\Rightarrow x=1-2y\)
\(\Rightarrow B=\left(1-2y\right)^2-5y^2+3\left(1-2y\right)-y-2\)
\(B=4y^2-4y+1-5y^2+3-6y-y-2\)
\(B=-y^2-11y+2\)
\(B=-\left(y^2+11y+\frac{121}{4}\right)+\frac{129}{4}\)
\(B=-\left(y+\frac{11}{2}\right)^2+\frac{129}{4}\le\frac{129}{4}\)
\(\Rightarrow B_{max}=\frac{129}{4}\) khi \(\left\{{}\begin{matrix}y=-\frac{11}{2}\\x=12\end{matrix}\right.\)
Câu 3:
Ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\Rightarrow2\left|xy\right|\le4\Rightarrow\left|xy\right|\le2\Rightarrow x^2y^2\le4\)
\(D=\left(x^2\right)^3+\left(y^2\right)^3+x^4+y^4\)
\(D=\left(x^2+y^2\right)\left[\left(x^2+y^2\right)^2-3x^2y^2\right]+\left(x^2+y^2\right)^2-2x^2y^2\)
\(D=4\left(16-3x^2y^2\right)+16-2x^2y^2\)
\(D=80-14x^2y^2\ge80-14.4=24\)
\(\Rightarrow D_{min}=24\) khi \(\left\{{}\begin{matrix}x^2=2\\y^2=2\end{matrix}\right.\)
2P = \(2x^2+4xy+4y^2-12x-8y+50\)
= \(\left(x+2y\right)^2-2\left(x+2y\right)\cdot2+4+x^2-8x+16+30\)
= \(\left(x+2y-2\right)^2+\left(x-4\right)^2+30\ge30\)
=> P \(\ge15\)
Dấu '' = '' xảy ra khi x = 4 ; y = -1