K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TN
0
DP
4
22 tháng 12 2015
Le Tran Anh này, bạn biết làm không mà bảo ng khác ngu? Nếu biết thì giải đi...
QL
0
VD
1
8 tháng 6 2015
a, A = x^6 - 2 x^3 +1 + x^2 - 2x + 1 + 13=(x^3 - 1)^2 + (x-1)^2 +13
Vậy Min A = 13 khi x=1
5 tháng 9 2020
Lâu rồi mới làm một bài :))
Áp dụng BĐT Cauchy ta có:
\(x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}=\left(x^2+y^2+1+\frac{9}{x^2+y^2+1}\right)+\left(3x+3y\right)-1\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{x^2+y^2+1}}+3.2\sqrt{xy}-1=6+6-1=11\).
Dấu "=" xảy ra khi và chỉ khi x = y = 1.
Vậy Min D = 11 khi và chỉ khi x = y = 1.
\(A=x^2+y^2+xy-3x-3y+2006\)
\(4A=4x^2+4y^2+4xy-12x-12y+8024\)
\(4A=\left(4x^2+4xy+y^2\right)+3y^2-12x-12y+8024\)
\(4A=\left[\left(2x+y\right)^2-2\left(2x+y\right).3+9\right]+3\left(y^2-2y+1\right)+8012\)
\(4A=\left(2x+y-3\right)^2+3\left(y-1\right)^2+8012\)
Mà \(\left(2x+y-3\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)\(\Rightarrow3\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow4A\ge8012\)
\(\Leftrightarrow A\ge2003\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}2x+y-3=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy \(A_{Min}=2003\Leftrightarrow x=y=1\)