\(A=|x-2017|-|x-2019|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

2/\(ĐKXĐ:x\ne-1\)

\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{2\left(x+1\right)^2-4\left(x+1\right)+4}{\left(x+1\right)^2}\)

  \(=2-\frac{4}{x+1}+\frac{4}{\left(x+1\right)^2}\)

Đặt \(\frac{2}{x+1}=t\)

\(\Rightarrow Q=t^2-2t+2=\left(t-1\right)^2+1\ge1\forall t\)

\(\Rightarrow minQ=1\Leftrightarrow t=1\)

                           \(\Leftrightarrow\frac{2}{x+1}=1\)

                         \(\Leftrightarrow x=1\left(tmđkxđ\right)\)             

29 tháng 2 2020

Ta có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

=> \(A\le\frac{2019}{2.2+2016}=\frac{2019}{2020}\)

Dấu "=" xảy ra <=> a = b = 1

2 tháng 11 2019

Đặt \(2n+2017=a^2;n+2019=b^2\)

\(\Rightarrow2n+4038=2b^2\)

\(\Rightarrow2b^2-a^2=2021\)

\(\Leftrightarrow\left(\sqrt{2b}-a\right)\left(\sqrt{2b}+a\right)=2021=1\cdot2021=47\cdot43\)

Tự xét nốt nha

2 tháng 11 2019

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{1}{2019}\)

\(\Leftrightarrow2019a+2019b-ab=0\)

\(\Leftrightarrow ab-2019a-2019b=0\)

\(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)

\(\Leftrightarrow a+b=a-2019+b-2019+2\sqrt{\left(a-2019\right)\left(b-2019\right)}\)

\(\Leftrightarrow2\sqrt{ab-2019a-2019b+2019^2}=2\cdot2019\)

\(\Leftrightarrow2\cdot2019=2\cdot2019\) ( LUÔN OK THEO COOL KID ĐZ )

P/S:SORRY NHA.LÚC CHIỀU BẬN VÀI VIỆC NÊN KO ONL DC:(((

18 tháng 12 2018

Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)

Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10 

Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5 

Dấu bằng xảy ra khi và chỉ khi x=y=2

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận

9 tháng 2 2019

\(H=\left(x^2+1\right)+\left(2y^2+8\right)+\frac{1}{x}+\frac{24}{y}-9\)

\(\ge2\sqrt{x^2.1}+2\sqrt{2y^2.8}+\frac{1}{x}+\frac{24}{y}-9\)

\(=2x+8y+\frac{1}{x}+\frac{24}{y}-9\)

\(=\left(\frac{1}{x}+x\right)+\left(\frac{24}{y}+6y\right)+x+2y-9\)

\(\ge2\sqrt{\frac{1}{x}.x}+2\sqrt{\frac{24}{y}.6y}+x+2y-9\)

\(=2+24+x+2y-9\ge26+5-9=22\)

Dấu "=" xảy ra khi x = 1; y = 2

Vậy ....

9 tháng 2 2019

Mấy bài này chủ yếu là kiểm tra kĩ năng chọn điểm rơi và áp dụng BĐT AM-GM (Cô si) đúng chỗ thôi chứ có gì đâu?