\(\frac{a^2+2a+2020}{a^2}\)


Mau lên nhé 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

1/ \(-9a^2+a+5=-\left(\left(3a\right)^2+2\cdot a\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}\right)=-\left(3a+\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)

Vậy GTLN của biểu thức bằng -19/4

Dấu "=" xảy ra \(\Leftrightarrow\left(3a+2\right)^2=0\Leftrightarrow3a+2=0\Leftrightarrow a=-\frac{2}{3}\)

29 tháng 7 2015

2/ \(2a^2+2ab+b^2+2a+5=a^2+2ab+b^2+a^2+2a+5=\left(a+b\right)^2+\left(a^2+2a+1\right)+4=\left(a+b\right)^2+\left(a+1\right)^2+4=0\ge4\)

Vậy GTNN của biểu thứ bằng 4

Dấu "=" xảy ra \(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2=0\Leftrightarrow a+b+a+1=0\Leftrightarrow2a+b+1=0\Leftrightarrow2a=-1-b\Leftrightarrow a=-\frac{1+b}{2}\)

13 tháng 7 2017

anh nên lên học 24h để được giả đáp tốt hơn !!

28 tháng 2 2020

2/\(ĐKXĐ:x\ne-1\)

\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{2\left(x+1\right)^2-4\left(x+1\right)+4}{\left(x+1\right)^2}\)

  \(=2-\frac{4}{x+1}+\frac{4}{\left(x+1\right)^2}\)

Đặt \(\frac{2}{x+1}=t\)

\(\Rightarrow Q=t^2-2t+2=\left(t-1\right)^2+1\ge1\forall t\)

\(\Rightarrow minQ=1\Leftrightarrow t=1\)

                           \(\Leftrightarrow\frac{2}{x+1}=1\)

                         \(\Leftrightarrow x=1\left(tmđkxđ\right)\)             

29 tháng 2 2020

Ta có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

=> \(A\le\frac{2019}{2.2+2016}=\frac{2019}{2020}\)

Dấu "=" xảy ra <=> a = b = 1

Ta có : \(Q=\frac{a^2-2a+2017}{a^2}=\frac{2017a^2-4034a+2017^2}{2017a^2}=\frac{2016a^2+a^2-4037a+2017^2}{2017a^2}\)

                \(=\frac{2016a^2+\left(a-2017\right)^2}{2017a^2}=\frac{2016a^2}{2017a^2}+\frac{\left(a-2017\right)^2}{2017a^2}=\frac{2016}{2017}+\frac{\left(a-2017\right)^2}{2017a^2}\)

Vì : \(\frac{\left(a-2017\right)^2}{2017a^2}\ge0\forall a\)

Nên : \(Q=\frac{2016}{2017}+\frac{\left(a-2017\right)^2}{2017a^2}\ge\frac{2016}{2017}\)

Vậy \(Q_{min}=\frac{2016}{2017}\) khi a = 2017

20 tháng 5 2017

Đặt \(A=\frac{a^4+2a^3+a^2+1}{a\left(a+1\right)}=\frac{\left(a^2+a\right)^2+1}{a^2+a}=a^2+a+\frac{1}{a^2+a}\)(a khác 0,-1)

=>\(A>=2\sqrt{\frac{\left(a^2+a\right)}{a^2+a}}=2\)

=>Min A=2 dấu '=' xảy ra khi \(a^2+a=\frac{1}{a^2+a}< =>\orbr{\begin{cases}a=\frac{-1+\sqrt{5}}{2}\\\frac{-1-\sqrt{5}}{2}\end{cases}}\)

P/s do đề không nói rõ nên làm theo trường hợp a là số thực dương

20 tháng 5 2017

giá trị nhỏ nhất là \(2,5\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

18 tháng 11 2017

Sửa đề: Cho a , b ,c dương thỏa mãn: a + b + c = 6abc .   Phần dưới vẫn như vậy.

Ta có thể viết:

\(Q=\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\Leftrightarrow Q=\frac{1}{a^3}+\frac{bc}{c+2b}+\frac{1}{b^3}+\frac{ca}{a+2c}+\frac{1}{c^3}+\frac{ab}{b+2a}\)

\(\Rightarrow a=b=c\)

\(\Leftrightarrow Q=\frac{1}{a^3b^3c^3}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\Leftrightarrow\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]^9}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\)

Do đó:

\(Q^9=\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}\Rightarrow Q^9\ge0\) , mà a , b ,c thỏa mãn a + b + c = 6abc

Vậy GTNN của Q là:    6000 : 9 = 666,6

Vậy dấu "=" xảy ra khi và chỉ khi \(\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}=666,6\) 

\(\Rightarrow Q\) đạt GTNN bằng 666,6 và khi a =b =c = 666,6

Ps: Giải chơi nhé! Đừng làm theo! Mình không chịu trách nhiệm hay bất cứ hình phạt nào như: Trừ điểm hỏi đáp, hack nic mình đâu nhé!