Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1)
PT hoành độ giao điểm:
\(x^2-3x+5-(x+b)=0\)
\(\Leftrightarrow x^2-4x+(5-b)=0\)
Để 2 ĐTHS có một điểm chung thì pt hoành độ giao điểm có một nghiệm duy nhất
\(\Leftrightarrow \Delta'=2^2-(5-b)=0\)
\(\Leftrightarrow b=1\)
2)
\(M=|2x+3|+|x-1|\)
\(2M=2|2x+3|+|2x-2|=(|2x+3|+|2x-2|)+|2x+3|\)
\(=(|2x+3|+|2-2x|)+|2x+3|\)
\(\geq |2x+3+2-2x|+|2x+3|\)
\(\geq |3+2|+0=5\)
\(\Rightarrow M\geq \frac{5}{2}\). Vậy \(M_{\min}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (2x+3)(2-2x)\geq 0\\ 2x+3=0\end{matrix}\right.\Leftrightarrow x=-\frac{3}{2}\)
P=\(\left\{\frac{2x+1}{x}\right\}^2\)+\(\left\{\frac{2y+1}{y}\right\}^2\)=\(\left\{2+\frac{1}{x}\right\}^2\)+\(\left\{2+\frac{1}{y}\right\}^2\) >= 2.\(\left\{2+\frac{1}{x}\right\}^{ }\)\(\left\{2+\frac{1}{y}\right\}^{ }\)
P>= 2.\(\left\{4+\frac{2}{x}+\frac{2}{y}+\frac{1}{xy}\right\}^{ }\)
P>=8 + 4\(\left\{\frac{1}{x}+\frac{1}{y}\right\}^{ }\) + \(\frac{2}{xy}\)
P>= 8 + 4.\(\left\{\frac{x+y}{xy}\right\}^{ }\)+\(\frac{2}{xy}\)
P>= 8+ \(\frac{4}{xy}\)+\(\frac{2}{xy}\)
P>= 8+ \(\frac{6}{xy}\)>= 8+ 6.\(\frac{4}{\left(x+y\right)^2}\)>= 8 + 6.4= 32
dấu = xảy ra khi x=y =\(\frac{1}{2}\)
1) Áp dụng BĐT Bunhiacopski
P = \(6\sqrt{x-1}+8\sqrt{3-x}\le\sqrt{\left(6^2+8^2\right)\left(x-1+3-x\right)}=10\sqrt{2}\)
Vậy Min P = \(10\sqrt{2}\) khi x = 43/25
2) a) \(\Rightarrow A-5=y-2x=4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\)
Áp dụng BĐT bunhiacopski
\(\Rightarrow\left(A-5\right)^2=\left(4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\right)^2\) \(\le\left(16y^2+36x^2\right)\left(\dfrac{1}{16}+\dfrac{1}{9}\right)=\dfrac{25}{16}\)
\(\Rightarrow-\dfrac{5}{4}\le A-5\le\dfrac{5}{4}\Rightarrow\dfrac{15}{4}\le A\le\dfrac{25}{4}\)
...........
b) tương tự
Đạo hàm đi bạn :D Cho nhanh
\(y=f\left(x\right)=x^4-2x^2\)
\(\Rightarrow f'\left(x\right)=4x^3-4x\)
\(f'\left(x\right)=0\Leftrightarrow4x^3-4x=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=0\end{matrix}\right.\)
\(f\left(1\right)=-1;f\left(-2\right)=8;f\left(-1\right)=-1;f\left(0\right)=0\)
\(\Rightarrow y_{min}=-1;"="\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(y_{max}=8;"="\Leftrightarrow x=-2\)
Đặt \(x^2=t\left(0\le t\le4\right)\)
\(y=f\left(t\right)=t^2-2t\)
\(minf\left(t\right)=min\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(1\right)=-1\)
\(maxf\left(t\right)=max\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(4\right)=8\)
\(min=-1\Leftrightarrow x=\pm1\)
\(max=8\Leftrightarrow x=-2\)
We have : \(A=x+y+\dfrac{1}{2x}+\dfrac{2}{y}=\dfrac{x+y}{2}+\left(\dfrac{y}{2}+\dfrac{2}{y}\right)+\left(\dfrac{1}{2x}+\dfrac{x}{2}\right)\)
\(Applying\) C-S we have : \(\dfrac{y}{2}+\dfrac{2}{y}\ge2;\dfrac{1}{2x}+\dfrac{x}{2}\ge1\)
x + y \(\ge3\) \(\Rightarrow\dfrac{x+y}{2}\ge\dfrac{3}{2}\)
So : \(A\ge\dfrac{3}{2}+2+1=\dfrac{9}{2}\)
" = " \(\Leftrightarrow x=1;y=2\)
áp dụng tính chất |A|+|B|>+|A+B|
y=|x-2|+|1-x|\(\ge\)|x-2+1-x|=|-1|=1
vậy gtri nhỏ nhất y=1 khi (x-2)(1-x)\(\ge0\)
<=> \(-1\le2\)
các câu sau tương tự nha
\(y=\left(2x^2+\frac{16}{x}+\frac{16}{x}\right)-\frac{27}{x}+1\ge24-\frac{27}{2}+1=\frac{23}{2}\)
Equelity iff \(x=2\)
Nyatmax nhầm r bạn ơi chỗ x+1 ở dưới mẫu