Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = x(x + 1)(x + 2)(x + 3)
=> A = [x(x + 3)].[(x + 1)(x + 2)]
=> A = (x2 + 3x) . (x2 + 3x + 2)
Đặt a = x2 + 3x + 1
Khi đó A = (a - 1)(a + 1)
=> A = a2 - 1
=> A = x2 + 3x + 1 - 1
=> A = x2 + 3x
=> A = x2 + 3x + \(\frac{4}{9}-\frac{4}{9}\)
\(\Rightarrow A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\)
Mà \(\left(x+\frac{2}{3}\right)^2\ge0\forall x\)
Nên : \(A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\ge-\frac{4}{9}\forall x\)
Vậy Amin = \(\frac{-4}{9}\) , dầu "=" xảy ra khi và chỉ khi x = \(-\frac{2}{3}\)
A = \(\frac{-1}{3}x^2+2x-5\)
= \(\frac{-1}{3}.\left(x^2-6+15\right)\)
= \(\frac{-1}{3}.\left(x^2-2.x.3+3^2-3^2+5\right)\)
= \(\frac{-1}{3}.\left[\left(x-3\right)^2-4\right]\)
= \(\frac{-1}{3}.\left(x-3\right)^2+\frac{4}{3}\)
-Ta có: \(\frac{-1}{3}.\left(x-3\right)^2\le0\).Với mọi x
=> \(\frac{-1}{3}.\left(x-3\right)^2+\frac{4}{3}\le\frac{4}{3}\).Với mọi x
hay A \(\le\frac{4}{3}\).Với mọi x
- Dấu " = " xảy ra khi: (x - 3)2 = 0 <=> x = 3
Vậy GTLN của A = \(\frac{4}{3}\)khi x = 3
a)A= x(x+3)(x+1)(x+2)
=(x^2+3x)(x^2+3x+2)
Đặt x^2+3x+1 là t
A=(t-1)(t+1)
=t^2-1
Nhận xét:t^2 lớn hơn hoặc bằng 0 nên A lớn hơn hoặc bằng 1
Dấu "=" xảy ra khi và chỉ khi t=0
Suy ra: x^2+3x+1=0
.........
B1 Xét (7x+1)\(^2\)-(x+7)\(^2\)-48(x\(^2\)-1)
=49\(x^2\)+14x+1-x\(^2\)-14x-49-48x\(^2\)+48
=0
Vậy \(\left(7x+1\right)^2-\left(x+7\right)^2=48\left(x^2-1\right)\)
B2 \(16x^2-\left(4x-5\right)^2=15\)
(4x)\(^2\)-(4x-5)\(^2\)-15=0
(4x-4x+5)(4x+4x-5)-15=09x-5)=0
5(8x-5)-15=0
40x-25-15=0
40x-40=0
x =1
câu B3 mình không bik làm
chúc bạn học tốt ~~~
a) 16(4x+5)2 - 25(2x+2)2
\(=\left[4\left(4x+5\right)\right]^2-\left[5\left(2x+2\right)\right]^2\)
\(=\left[4\left(4x+5\right)+5\left(2x+2\right)\right]\left[4\left(4x+5\right)-5\left(2x+2\right)\right]\)
\(=\left(16x+20+10x+10\right)\left(16x+20-10x-10\right)\)
\(=\left(26x+30\right)\left(6x+10\right)\)
\(b,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-2y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-3y+5\right)\)
\(c,\left(x+1\right)^4-\left(x-1\right)^4\)
\(=\left(x+1\right)^{2^2}-\left(x-1\right)^{2^2}\)
\(=\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\)
\(=\left(x^2+2x+1+x^2-2x+1\right)\left[\left(x+1+x-1\right)\left(x+1-x+1\right)\right]\)
\(=\left(2x^2+2\right)2x.2\)
\(=4x.2\left(x^2+1\right)\)
\(=8x\left(x^2+1\right)\)
\(\frac{x}{y}=10\Rightarrow x=10y\)
\(M=\frac{16x^2-40xy}{8x^2-24xy}=\frac{8x\left(2x-5y\right)}{8x\left(x-3y\right)}=\frac{2x-5y}{x-3y}\)
\(=\frac{2.10y-5y}{10y-3y}=\frac{15}{7}\)
\(27x^3+125y^3\)
\(=\left(3x\right)^3+\left(5y\right)^3\)
\(=\left(3x+5y\right)\left(9x^2-15xy+25y^2\right)\)
\(16x^2-24xy+9y^2\)
\(=\left(4x\right)^2-2.4x.3y+\left(3y\right)^2\)
\(=\left(4x-3y\right)^2\)
A=x2y2+2x2+24xy+16x+191
A={(xy)2+24xy+144}+(2x2+16x+32)+15
A=(xy+12)2 + 2(x+4)2 + 15
Nhận thấy: \(\hept{\begin{cases}\left(xy+12\right)^2\ge0\\2\left(x+4\right)^2\ge0\end{cases}}\)Với mọi x, y
=> A=(xy+12)2 + 2(x+4)2 + 15 \(\ge\)0+0+15 Với mọi x, y
=> GTNN của A=15
Đạt được khi: \(\hept{\begin{cases}\left(xy+12\right)^2=0\\2\left(x+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}xy+12=0\\x+4=0\end{cases}}\)<=> \(\hept{\begin{cases}y=3\\x=-4\end{cases}}\)
Đáp số: GTNN là 15, đạt được khi x=-4; y=3