Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện <=> y2 =1 -(x-2)2 \(\ge0< =>\left(x-2\right)^2\le1< =>-1\le x-2\le1< =>1\le x\le3.\)
m = x2+y2 = x2 +1 -(x-2)2 = 4x -3
=> 4.1-3 \(\le m\le\)4.3-3 <=> \(1\le m\le9\)
m Min =1 khi x =1; m Max= 9 khi x =3
Bài 1:
a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)
Dấu '=' xảy ra khi x=-2
b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
\(D=-x^2-4x\)
\(=-\left(x^2+4x\right)\)
\(=-\left(x^2+2.x.2+2^2-4\right)\)
\(=-\left[\left(x+2\right)^2-4\right]\)
\(=-\left(x+2\right)^2+4\)
Vì \(-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2+4\le4\forall x\)
\(\Rightarrow D\le4\forall Dx\)
Dấu ''=" xảy ra khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Vậy \(MAX_D=4\) khi \(x=-2.\)
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
A=5x^2+9y^2-4x-12xy+9
= x^2 - 4x + 4 + 9y^2 - 12xy + 4x^2 + 5
= (x-2)^2 + (3y - 2x)^2 +5 >= 5
Dấu "=" xẩy ra khi x-2=0 và 3y-2x=0
hay x = 2 và y = 4/3
Vậy GTNN của A là 5 khi x = 2 và y = 4/3
tim gtnn cua x^2+4x+2
GIẢI:
\(x^2+4x+2\)
\(=\left(x^2+2.x.2+2^2\right)-2\)
\(=\left(x+2\right)^2-2\)
Nhận xét : \(\left(x+2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+2\right)^2-2>0\) với mọi x
Vậy GTNN của biểu thức là -2 đạt được khi :
\(\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)