Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tổng ccacs hệ số = f(1) =(1+4+3)2015 =82015
b) Tổng các hệ số mũ lẻ : [f(1) -f(-1)]:2 =[ 82015- 0]:2 =82015:2
c) Tổng các hệ số chẵn : [f(1)+f(-1)]:2 =[ 82015+ 0]:2 =82015:2
\(\left(2x+3\right)^2+\left(3x-2\right)^4=0\)
vì \(\left(2x+3\right)^2\ge0;\left(3x-2\right)^4\ge0\)
nên\(\Rightarrow\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^4=0\end{cases}\Rightarrow\hept{\begin{cases}2x+3=0\\3x-2=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}\)
(x^2+1)(x-1)(x+3)>0
Vì x^2+1>0 với mọi x
nên: (x-1)(x+3)>0
Trường hợp 1:
x-1<0, x+3 <0
Vì x+3 > x-1 nên x+3<0 suy ra x<-3
Trường hợp 2:
x-1>0, x+3>0
Vì x-1<x+3 nên x-1 >0 suy ra x>1
Vậy x<-3 hoặc x>1
Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương
TH1: Có 2 số âm, 1 số dương
Trước hết ta có \(x+3>x-1\)
\(x^2+1>x-1\)
Vì vậy \(x-1< 0\)
\(x^2+1>0\) nên \(x+3< 0\)
\(\Rightarrow x< -3\left(< 1\right)\)
TH2: Cả 3 số đều dương
Xét số bé nhất lớn hơn 0:
\(x-1>0\Rightarrow x>1\)
Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)
Sorry tớ chưa học bạn ạ xin lỗi bạn nha ^_^
ko ghi lại đề nha !!!
D có giá trị âm khi
\(x^2-\frac{2}{5}x< 0\)
Cho \(x^2-\frac{2}{5}x=0\)
<=> x(x - 2/5) = 0
<=> \(\orbr{\begin{cases}x=0\\x-\frac{2}{5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{5}\end{cases}}\)
Bảng xét dấu:
Vậy: biểu thức D nhận giá trị âm khi \(x\in\left(0;\frac{2}{5}\right)\) ( có nghĩa là x sẽ bằng tất cả các số "từ lớn hơn 0 đến bé hơn 2/5 )
Chú ý: đây là cách giải của lớp 10 và 11 nếu em ko hiểu thì cx chịu chứ anh ko nhớ cách lớp 7
----câu E và F còn dễ hơn câu D này nữa nên em tự giải nha !!!!!!!
H(x)=x2+(x+1)+(x+1)=0
(x2+1)+(x+1)=0
TH1 x2+1=0 suy ra x2= -1(vô lí vì x2 luôn lớn hơn hoặc bằng 0)
TH2 x+1=0 suy ra x= -1
Vậy phương trình có nghiệm là x= -1
Xét + \(\left|x-1\right|+\left|x-1996\right|\)
\(=\left|x-1\right|+\left|1996-x\right|\ge\left|x-1+1996-x\right|=1995\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-1\right)\left(1996-x\right)\ge0\)
\(\Rightarrow1\le x\le1996\)
+ \(\left|x-2\right|+\left|x-1995\right|\)
\(=\left|x-2\right|+\left|1995-x\right|\ge\left|x-2+1995-x\right|=1993\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-2\right)\left(1995-x\right)\ge0\)
\(\Rightarrow2\le x\le1995\)
\(...\)
+ \(\left|x-997\right|+\left|x-998\right|\)
\(=\left|x-997\right|+\left|998-x\right|\ge\left|x-997+998-x\right|=1\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-997\right)\left(998-x\right)\ge0\)
\(\Rightarrow997\le x\le998\)
Do đó nên
\(\left(\left|x-1\right|+\left|x-1996\right|\right)+\left(\left|x-2\right|+\left|x-1995\right|\right)+...+\left(\left|x-997\right|+\left|x-998\right|\right)\ge1995+1993+...+1\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-1996\right|\ge\left(1+1995\right)\left[\left(1995-1\right):2+1\right]:2=996004\)
Dấu \("="\) xảy ra \(\Leftrightarrow997\le x\le998\)
Vậy giá trị nhỏ nhất của \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-1996\right|\) là \(996004\) khi \(997\le x\le998\)